Measurements of CP Violation at the Tevatron

Dmitri Tsybychev on behalf of CDF and D0 Collaborations Stony Brook University Rancontres de Blois May 31, 2011

SM Success and Failure

- B meson mixing and decays probe 5 of the 9 elements of ^{1.5} the CKM matrix
 - Measure angles and sides independently
 - CP Violation: A~3x10⁻⁵
 - Fails to accommodate observed baryon asymmetry -0.5 by about 10 orders of magnitude!
 - Need Physics beyond SM!
 - B_s is the least explored system
 - Charm
- Predicted CP phases are very small in SM search for large deviations
 D. Tsybychev

CP Violation in B_s

- Assume no CPV in decays
- CPV is possible through mixing
 - 2 phases involved
 - β_s access through $B_s \rightarrow J/\psi\phi$
 - φ_s access through semileptonic decays

-2β ~ φ ~ φ ^{NP}

$A^{b}_{\ sl}$ in neutral B mesons

Measurement of the charge asymmetry induced by B mixing

 A^b_{sl} is equal to the charge asymmetry of "wrong sign" semileptonic B decays:

$$A_{SL}^{b} = \frac{\Gamma(\overline{B} \to \mu^{+}X) - \Gamma(B \to \mu^{-}X)}{\Gamma(\overline{B} \to \mu^{+}X) + \Gamma(B \to \mu^{-}X)} = \frac{1}{2f} \left[A_{SL}^{d} + \frac{f_{s}\chi_{s0}}{f_{d}\chi_{d0}} A_{SL}^{s} \right]$$
$$A_{SL}^{(s)} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} = \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin \varphi_{(s)} = \frac{\Delta \Gamma_{(s)}}{\Delta m_{(s)}} \cdot \tan \varphi_{(s)} \quad A_{sl}^{s} = (-0.023 \pm 0.006)\%$$

• Since both B_d and B_s are produced at the Tevatron, A^b_{sl} is a linear combination of a^d_{sl} and a^s_{sl} :

 $A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$

• B factories provide independent measurement of a^d_s

Analysis Strategy

1 Experimentally, we measure two quantities:

• Like-sign dimuon charge asymmetry (3.731×10⁶ events):

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = KA_{sl}^{b} + A_{bkg} = (+0.564 \pm 0.053)\%$$

• Inclusive muon charge asymmetry (1.495×10⁹ muons):

$$a = \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = kA_{sl}^{b} + a_{bkg} = (+0.955 \pm 0.003)\%$$

- *N*⁺⁺, *N*⁻⁻ the number of events with two same charge dimuons
- n^+ , n^- the number of muons with given charge
- Both A and a linearly depend on the charge asymmetry A^{b}_{sl}
- 2 Determine the background contributions A_{bkg} and a_{bkg} from other processes plus detector-related backgrounds
- 3 Determine Fractions *K* and *k* from mixed B hadron decays
- 4 Exploit different signal and correlated background content to extract A_{sl}^{b}

Closure Test

- The value of *a* is mainly determined by the background asymmetry *a*_{bka}
 - A_{sl}^{b} is suppressed by $k = 0.041 \pm 0.003$
- Construct a_{bkg} from

 f_K , f_n , f_p , a_K , a_n , a_p and δ_r verify how well does it describe the observed asymmetry a

- *a* and a_{bkg} are compared as a function of muon p_T
- χ^2 /dof = 2.4/5 for the difference between these two distributions

Excellent agreement between the expected and observed values of a, including a p_T dependence

Final Result

• From A' = A - a a we obtain a value of A_{sl}^{b} :

 $A_{sl}^{b} = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$

To be compared with the SM prediction:

 $A_{sl}^{b}(SM) = (-0.023_{-0.006}^{+0.005})\%$

- This result differs from the SM prediction by ~3.2 σ
 Phys. Rev. Lett. 105, 081801 (2010)
 - Phys. Rev. D 82, 032001, (2010)
- Previous D0 measurement

 $A_{SL} = (-0.92 \pm 0.44 \pm 0.32)\%$

Phys. Rev. D 74, 092001 (2006)

Further Improvements

- Precision of current result is dominated by statistical uncertainties
 - 6 fb-1 \rightarrow 9 fb-1
 - Improve event selection 12% increase in number of like sign muons
- New measurement technique takes advantage of correlated uncertainties in f_K and F_K measurement
 - *Reduce uncertainties by ~30%*
- Anticipate ~30% reduction in final uncertainty on A^b_{sl}

Minimum muon momentum required to penetrate toroid and calorimeter to reach outer muon chambers

Time Integrated Mixing

- Use muon impact parameter distribution to separate bb contribution from other sources
- Plot the IP distributions (d1,d2) for opposite sign (OS) and same sign (++, --) muons.
- Simultaneously fit the distributions for muons from b-pairs (BB), c-pairs (CC), sequential decays (BC), Drell-Yan (PP), and D.I.F.'s or misID's with a muon or in pairs (BB_{FK}, CC_{FK}, and other).

Time Integrated Mixing

• Average mixing probability:

$$\overline{\chi}_{b} = \frac{\Gamma(B^{0} \to \overline{B}^{0} \to \ell^{+}X)}{\Gamma(B \to \ell^{\pm}X)} = f_{d}\chi_{d} + f_{s}\chi_{s}$$

- Measure through: $R = \frac{N^{++} + N^{--}}{N^{OS}} \qquad R = \frac{f\left[\overline{\chi}^2 + (1 - \overline{\chi})^2\right] + 2\overline{\chi}(1 - \overline{\chi})(1 - f)}{(1 - f)\left[\overline{\chi}^2 + (1 - \overline{\chi})^2\right] + 2\overline{\chi}(1 - \overline{\chi})f}$
- f = 0.176 ± 0.011 accounts for sequential and other b -decays
- Extracted value: 0.126 ± 0.008 (0.006 due to f) Compare to LEP: 0.1259 ± 0.0042
 - Previous measurement PRD 82.032001; PRL.105.081801
- A^b_{SL} measurement to follow with larger dataset

$\phi^{J/\psi\phi}{}_{s}$ in $B_{s} \rightarrow J/\psi\phi$

- Measure $\varphi^{J/\psi\varphi}{}_{s}(\beta_{s})$ and $\Delta\Gamma_{s}$ by studying time evolution of flavor tagged $B_{s} \rightarrow J/\psi(\mu + \mu^{-})\phi(K^{+}K^{-})$ decays
 - Pseudoscalar → Vector Vector
 - 3 possible angular momentum states
- The mass eigenstates are expected to be almost pure CP-eigenstates
 - S,D (CP even): linear combination of A₀, A₁₁
 - P (CP odd): A₁
- Decay parameterized by three angles $\Gamma(t) \approx |A_{even}(\theta, \psi, \varphi, t)|^{2} + |A_{odd}(\theta, \psi, \varphi, t)|^{2}$ • CP eigenstates - well separated in $+A^{*}A(CPC) \quad \text{CP-conserving interference} \quad \text{transversity (cos}\theta)$ $+A^{*}A(CPV)(e^{-\Gamma_{L}t} - e^{-\Gamma_{H}t})\sin\phi_{s}^{J/\psi\varphi} \quad \text{CP-violating interference}$

 $\psi \phi_{s}$ in $B_{s} \rightarrow J/\psi \phi$

• $\Delta \Gamma_s = 0.15 \pm 0.06(\text{stat}) \pm 0.01$ (syst) ps⁻¹

fitted fraction of S-wave contamination is < 6.7 % @ 95 % C.L.

Additional channels for β_s

• $R_{f0/\phi} = [BF(B_s \rightarrow J/\psi f_0(980))BF(f_0(980) \rightarrow \pi^+\pi^-)]/[BF(B_s \rightarrow J/\psi \phi)BF(\phi \rightarrow K^+K^-)]$ CDF: 0.292 ± 0.020(stat) ± 0.017(sys) D0 : 0.210 ± 0.032 (stat) ± 0.036(sys)

BF(B_s→J/ ψ f₀(980))BF(f₀(980)→ $\pi^{+}\pi^{-}$) = (1.85±0.13(stat)±0.11(sys)±0.57(pdg))10⁻⁴ Since f₀(980) is scalar no angular analysis needed

Search for CPV in $B_s \rightarrow \varphi \varphi$

- Decay and mixing phases cancel out
 - CPV is predicted to be 0
 - Large deviation points to New Physics
- Limited sample statistics (~300) does not allow time – dependent analysis
 - Use Triple Products asymmetries
 - Odd under time reversal (T)
 - Sensitive to CP if CPT is conserved
- Define:
- $u = \cos \phi \sin \phi \sim Im(A_{||}A_{perp}^*)$
- $v = \sin \phi$ for $\cos \theta_1 \cos \theta_2 > 0$ $sin(-\phi)$ for $cos \theta_1 cos \theta_2 <=0$) $\sim Im(A_0A^*_{perp})$

Search for CPV in $B_s \rightarrow \phi \phi$

Construct asymmetries: $A_{u,v} = \frac{N^+ - N^-}{N^+ + N^-}$

CDF Note 10424

- $A_u = -0.007 \pm 0.064$ (stat) ± 0.018 (syst)
- $A_v = -0.120 \pm 0.064$ (stat) ± 0.016 (syst) 1.8σ effect

Time Integrated A_{CP} in $D^0 \rightarrow h^+h^-$ Decays

- CP violation significantly larger than ~1% in singly -Cabibbo suppressed transitions $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ would point to presence of NP
- Extract asymmetries

$$A_{\rm CP}(h^+h^-) = \frac{\Gamma(D^0 \to h^+h^-) - \Gamma(\overline{D}{}^0 \to h^+h^-)}{\Gamma(D^0 \to h^+h^-) + \Gamma(\overline{D}{}^0 \to h^+h^-)}.$$

- From $A_{CP}(h^+h^-) = A_{CP}^{raw}(hh^*) A_{CP}^{raw}(K\pi^*) + A_{CP}^{raw}(K\pi)$. using D*-tagged D⁰ \rightarrow h⁺h⁻ and D⁰ \rightarrow n⁺K⁻ decays, and untagged D⁰ \rightarrow n⁺K⁻
 - Soft pion determines flavor
 - Non-zero asymmetry is due to CP violation or detector /reconstruction

Time Integrated A_{CP} in $D^0 \rightarrow h^+h$ - Decays

 $A_{CP}(D^0 \rightarrow K^+K^-) = [-0.24 \pm 0.22 \text{ (stat)} \pm 0.10 \text{ (syst)}]\%$

Summary and Conclusions

- Mature Tevatron experiments producing exciting results
- The observed A^{b}_{SL} asymmetry is inconsistent with the SM prediction at a 3.2 σ level
 - Observed number of produced particles of matter (negative muons) is almost 50 times larger than the number of produced particles of antimatter
 - Result is consistent with other Tevtron measurements of CP violation in mixing
 - Dominant uncertainty is statistical precision can be improved with more luminosity!
- Most precise experimental results on the CPV phase ϕ_s and the mass eigenstates width difference $\Delta \Gamma_s$ from the Tevatron, using reconstructed Bs $\rightarrow J/\psi \phi$ decays
 - Doubling of data sets by the end of the Tevatron run
 - Addition of new channels allows better precision
- Word's most precise measurement of mixing-induced CP violation in charm sector