Recent results from Charmonium decays at BESIII

Bin Zhong Institute of High Energy Physics (For the BESIII Collaboration)

23rd Rencontre de Blois Particle Physics and Cosmology 29th May . -3rd June., 2011, Blois, France

Outline

- BEPCII and BESIII
- Observation of h_c
- Evidence for $\psi' \rightarrow \gamma P$ (P= π^0 , η)
- $\psi' \rightarrow \gamma \chi_{cJ}$ > $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$ > $\chi_{cJ} \rightarrow VV (V = \omega, \phi)$
- Summary

The Beijing Electron-Positron Collider II

BEPC II achievements

parameters	design	Achieved	
		BER	BPR
Energy (GeV)	1.89	1.89	1.89
Beam curr. (mA)	910	650	700
Bunch curr. (mA)	9.8	>10	>10
Bunch number	93	93	93
RF voltage	1.5	1.5	1.5
* <i>v_s</i> @1.5MV	0.033	0.032	0.032
$\beta_x^*/\beta_y^*(\mathbf{m})$	1.0/0.015	~1.0/0.0135	~1.0/0.0135
Inj. Rate (mA/min)	200 e ⁻ / 50 e ⁺	>200	>50
Lum. (× 10 ³³ cm ⁻² s ⁻¹)	1	0.65	

The Beijing Spectrometer III

BESIII data samples

2010: ~ 900 pb⁻¹ $\psi(3770)$ data taken at 3.773GeV ~ 70 pb⁻¹ energy scan data taken from 3.646 to 3.892 GeV 2011: ~ 1800 pb⁻¹ $\psi(3770)$ data taken at 3.773GeV ~ 500 pb⁻¹ $\psi(4040)$ data taken at 4.01 GeV

2011-06

Observation of $h_c(1)$

- $B(\Psi' \rightarrow \pi^0 h_c);$ measure of isospin violation
- $B(h_c \rightarrow \gamma \eta_c)$: large E1 transition
- M(h_c) gives access to hyperfine splitting of 1P states: M(h_c(1P)) - < M(\carcolog_{cJ}(1P)) > spin-weighted
- first evidence: E385 in $\bar{p}p \rightarrow h_c \rightarrow \eta_c \gamma$ PRD 72, 092004 (2005)
- CLEO-c could only access $B(\Psi' \rightarrow \pi^0 h_c) \times B(h_c \rightarrow \gamma \eta_c)$: PRL 101, 182003 (2008)
- BESIII could access individual *B* and *B*, *M*(*h_c*), Γ(*h_c*):
 PRL 104, 132002 (2010)

Observation of h_c (2)

201

Tag the photon to access $B(\Psi' \rightarrow \pi^0 h_c) \times B(h_c \rightarrow \gamma \eta_c)$ = (4.58 ± 0.40 ± 0.50) × 10⁻⁴ (consistent with CLEO-c)

Don't tag the photon to access $B(\Psi'
ightarrow \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) imes 10^{-4}$ (first measurement)

• Combining the branching fractions leads to $B(h_c \rightarrow \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$ (first measurement)

• $M(h_c) = 3525.40 \pm 0.13 \pm 0.18$ MeV (consistent with CLEO-c); $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28$ MeV (first measurement)

Observation of h_c (3)

	BESIII	CLEOc
Br(ψ'→ π^{0} h _c)× Br(h _c →γ η _c) [10 ⁻⁴]	4.58±0.40±0.50	$4.19 \pm 0.32 \pm 0.40$
M [MeV/c ²]	3525.40 ±0.13±0.18	3525.80 ±0.19±0.11
Г [МеV]	$0.73 \pm 0.45 \pm 0.28$	1.1 (NRQCD) Kuang
	<1 .44 @ 90%CL	0.51 (PQCD) Kuang
$\Delta M_{hf}(1P) [MeV/c^2]$	$0.10 \pm 0.13 \pm 0.18$	$0.08 \!\pm\! 0.18 \!\pm\! 0.12$
	BESIII	theoretical prediction
Br(ψ′→ π ⁰ h _{c)} [10 ⁻⁴]	8.4±1.3±1.0	4 - 13
Br(h_c→γη_c)	54.3±6.7±5.2	41 (NRQCD) Kuang
		88 (PQCD) Kuang
		38 Godfrey, Rosner

Evidence for $\psi' \rightarrow \gamma P$ ($P = \pi^0, \eta$) (1)

PRL105, 261801 (2010)

- Test for various phenomenological mechanisms
- The first order of perturbation theory predicts: $R_{J/\psi} = B(J/\psi \rightarrow \gamma \eta)/B(J/\psi \rightarrow \gamma \eta') = R_{\psi'}$
- Measurements from CLEO (PRD79,111101(2009)): R_{ψ} ,<1.8% (90% C.L.) and $R_{J/\psi}$ =(21.1±0.9)%
- The suppressed decay mode $\psi' \rightarrow \gamma \pi^0$ is calculated in PRD79,097301: B($\psi' \rightarrow \gamma \pi^0$)=2.19×10⁻⁷
- CLEO gives $B(\psi' \rightarrow \gamma \pi^0) < 5.0 \times 10^{-6} (90\% \text{ C.L.})$

Evidence for $\psi' \rightarrow \gamma P$ ($P=\pi^0, \eta$) (2)

One dangerous background for ψ'→γπ⁰(γγ) is ee→γγ events with one photon conversion but the produced ee pair is not well reconstructed.
So special requirement N_{hits}<=10 is applied, where N_{hits} is the number of hits in the MDC sector between the two shower positions.

Red histogram: MC signal, dashed histogram: continuum BG, Points: ψ ' data

Evidence for $\psi' \rightarrow \gamma P (P = \pi^0, \eta)$ (3)

Branching ratios (10⁻⁶):

Mode	BESIII	Combined BESIII	PDG
$\psi' \to \gamma \pi^0$ $\psi' \to \gamma \eta (\pi^+ \pi^- \pi^0)$	$\begin{array}{c} 1.58 \pm 0.40 \pm 0.13 \\ 1.78 \pm 0.72 \pm 0.17 \\ \end{array}$	$\begin{array}{c} 1.58 \pm 0.40 \pm 0.13 \\ 1.38 \pm 0.48 \pm 0.09 \end{array}$	≤ 5 ≤ 2
$ \begin{array}{l} \rightarrow \gamma \eta(\pi^0 \pi^0 \pi^0) \\ \psi' \rightarrow \gamma \eta'(\pi^+ \pi^- \eta) \\ \rightarrow \gamma \eta'(\pi^+ \pi^- \gamma) \end{array} $	$\begin{array}{c} 1.07 \pm 0.65 \pm 0.08 \\ 120 \pm 5 \pm 8 \\ 129 \pm 3 \pm 8 \end{array}$	$126\pm3\pm8$	121 ± 8

The first measurement: $R_{\psi'} = (1.10 \pm 0.38 \pm 0.07)\%$

much smaller than $R_{J/\psi} = (21.1 \pm 0.9)\%$

Study of $\chi_{cI} \rightarrow \gamma V (V = \rho, \omega, \phi)$ (1)

A favorable process to validate theoretical techniques

Theoretical predictions and results from CLEO-c on Br($\chi_{cJ} \rightarrow \gamma V$) (10 ⁻⁶):					
	Mode	CLEO ¹	pQCD ²	QCD ³	QCD+QED ³
	$\chi_{c0} \to \gamma \rho^0$	< 9.6	1.2	3.2	2.0
	$\chi_{c1} \to \gamma \rho^0$	243 \pm 19 \pm 22	14	41	42
	$\chi_{c2} o \gamma \rho^0$	< 50	4.4	13	38
	$\chi_{\rm CO} \to \gamma \omega$	< 8.8	0.13	0.35	0.22
	$\chi_{ m c1} ightarrow \gamma \omega$	$83\pm15\pm12$	1.6	4.6	4.7
	$\chi_{\rm C2} ightarrow \gamma \omega$	< 7.0	0.5	1.5	4.2
	$\chi_{c0} \to \gamma \phi$	< 6.4	0.46	1.3	0.03
	$\chi_{c1} \rightarrow \gamma \phi$	< 26	3.6	11	11
	$\chi_{c2} \rightarrow \gamma \phi$	< 13	1.1	3.3	6.5

1. PRL 101,151801 (2008). 2. Chin. Phys. Lett. 23, 2376 (2006). 3. hep-ph/0701009

Study of $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$ (2)

Study of $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$ (3)

2011-06

Study of
$$\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$$
 (4)

L: Longitudinal polarization, T: Transverse polarization, θ : Helicity angle 19

$$\frac{d\Gamma}{d\cos\theta} \propto (1 - f_T)\cos^2\Theta + \frac{1}{2}f_T\sin^2\Theta \qquad f_T = \frac{|A_T|^2}{|A_T|^2 + |A_L|^2}$$

The longitudinal polarization dominates in the $\chi_{c1} \rightarrow \gamma V$:

Study of $\chi_{c1} \rightarrow VV (V=\omega, \phi)$

Previous measurements from BESII.

Only χ_{c0} and χ_{c2} decays into $\phi\phi$ and $\omega\omega$ are observed.

BR (10 ⁻³)	χ _{c0}	Xc2
→фф BESII, PLB 642, 197 (2006)	$0.94 \pm 0.21 \pm 0.13$	$1.70 \pm 0.30 \pm 0.25$
→ @@ BESII, PLB 630, 7 (2005)	$2.29 \pm 0.58 \pm 0.41$	$1.77 \pm 0.47 \pm 0.36$

- *χ*_{c1}→VV is suppressed due to helicity selection rule in
 pQCD
- $\chi_{cJ} \rightarrow \omega \phi$ is doubly OZI suppressed.

 $\chi_{cJ} \rightarrow \phi \phi, \phi \rightarrow K^+K^-$

- Using kinematic fit to select γ2(K⁺K⁻) candidates
- $\phi\phi$ pair reconstruction: minimize $[M^{(1)}(K^+K^-)-m_{\phi}]^2 + [M^{(2)}(K^+K^-)-m_{\phi}]^2$

$\chi_{cJ} \rightarrow \omega \omega, \omega \rightarrow \pi^+ \pi^- \pi^0$

- Using kinematic fit to select $5\gamma 2(\pi^+\pi^-)$ candidates
- $\pi^0 \pi^0$ pair reconstruction: minimize $[\mathbf{M}^{(1)}(\gamma\gamma) \mathbf{m}_{\pi 0}]^2 + [\mathbf{M}^{(2)}(\gamma\gamma) \mathbf{m}_{\pi 0}]^2$ loop over 5 γ
- ω reconstruction: minimize $|m(\pi^+ \pi^- \pi^0) m_{\omega}|$, then remained $\pi^+ \pi^- \pi^0$ reconstruct the other ω

$$\chi_{cJ} \rightarrow \omega \phi(\phi \phi), \, \omega(\phi) \rightarrow \pi^+ \pi^- \pi^0, \, \phi \rightarrow K^+ K^-$$

- K⁺K⁻ are identified : minimize |M(K⁺K⁻)-m_b|
- Using kinematic fit to select $3\gamma 2K2\pi$ candidates
- ω reconstruction: minimize $[M_{\gamma\gamma}-m_{\pi0}]^2 + [M_{\gamma\gamma\pi+\pi-}-m_{\omega}]^2$ loop over 3γ

Conclusion of the $\chi_{c1} \rightarrow VV$ (V= ω , ϕ) Study

- Latest measurements from BESIII.
- Helicity selection rule violated process $\chi_{c1} \rightarrow VV$ is observed.
- Doubly OZI suppressed process $\chi_{cJ} \rightarrow \omega \phi$ is also observed.

Final states	Channel	$\mathcal{B}(\times 10^{-4})$	$PDG(\times 10^{-4})$
	$\chi_{c0} \rightarrow \phi \phi$	$7.8 \pm 0.4 \pm 0.8$	9.2 ± 1.9
$\gamma 2(K^+K^-)$	$\chi_{c1} \rightarrow \phi \phi$	$4.1\pm0.3\pm0.4$	
	$\chi_{c2} \rightarrow \phi \phi$	$10.7\pm0.4\pm1.1$	14.8 ± 2.8
	$\chi_{c0} \rightarrow \phi \phi$	$9.2 \pm 0.7 \pm 1.0$	9.2 ± 1.9
$\gamma K^+ K^- \pi^+ \pi^- \pi^0$	$\chi_{c1} \rightarrow \phi \phi$	$5.0 \pm 0.5 \pm 0.6$	
	$\chi_{c2} \rightarrow \phi \phi$	$10.7 \pm 0.7 \pm 1.2$	14.8 ± 2.8
	$\chi_{c0} \rightarrow \phi \phi$	$8.0 \pm 0.3 \pm 0.8$	9.2 ± 1.9
Combined	$\chi_{c1} \rightarrow \phi \phi$	$4.4 \pm 0.2 \pm 0.5$	
	$\chi_{c2} \to \phi \phi$	$10.7 \pm 0.3 \pm 1.2$	14.8 ± 2.8
	$\chi_{c0}\to\omega\omega$	$9.5 \pm 0.3 \pm 1.1$	22 ± 7.0
$\gamma 2(\pi^+\pi^-\pi^0)$	$\chi_{c1} \to \omega \omega$	$6.0 \pm 0.2 \pm 0.7$	
	$\chi_{c2} \to \omega \omega$	$8.9\pm0.3\pm1.1$	19.0 ± 6.0
	$\chi_{c0} \rightarrow \omega \phi$	$1.2 \pm 0.1 \pm 0.2$	
$\gamma K^+ K^- \pi^+ \pi^- \pi^0$	$\chi_{c1} \to \omega \phi$	$0.22 \pm 0.06 \pm 0.02$	
	$\chi_{c2} \rightarrow \omega \phi$	< 0.2	

Summary

- With the largest ψ ' data sample in the world and good performance of BEPCII and BESIII, several recent results about charmonium decay came out:
 - Observation of h_c
 - > First evidence for $\psi' \rightarrow \gamma P$ (P= π^0 , η)
 - > Study of $\chi_{cJ} \rightarrow \gamma V (V = \rho, \omega, \phi)$
 - > Study of $\chi_{cJ} \rightarrow VV (V=\omega,\phi)$
- More exciting results are coming soon from BESIII.