CP Violation and CKM parameters (and a few slides on Rare Decays)

Heavy Flavour physics as a tool to search for New Physics

- Strategy
- Experimental observables and comments on their sensitivity to NP

□ Current sensitivity to NP effects and prospects for the nearest future (2011-2012)

- NP phases
- Rare decays: rates and helicity structure

Strategy: find observables which test the penguin and box diagrams separately; make a test which involves quarks of all three generations \rightarrow Explore both $B_{u,d}$ and B_s sectors, and b-baryons

Observables: CPV phases, rates of rare processes and helicity structure of involved amplitudes

□*Phases*

CPV processes are the only measurements sensitive to the phases of New Physics e.g. measurements of β , β_s & γ

□ Masses and magnitude of the couplings of New Particles Inclusive $BR(b \rightarrow s\gamma)$ indirectly constrains the scale of NP masses $\Lambda > 10^3$ TeV for generic coupling (flavour problem)

Look at specific cases with enhanced sensitivity to NP $B_{s,d} \rightarrow \mu\mu$, ...

BR(b→sγ): Exp. 3.55±0.26×10⁻⁴ Theor. 3.15±0.23×10⁻⁴

□ Helicity structure of the couplings

Use the correlation between photon polarization and b flavour in $b \rightarrow s\gamma$

 $b \rightarrow \gamma (L) + (m_s/m_b) \times \gamma(R)$ $\phi \gamma$ produced in B_s and \overline{B}_s decays do not interfere \rightarrow corresponding CP asymmetry vanishes Significantly non-zero A_{CP} indicates a presence of right-handed current in the penguin loop Similar study in $B \rightarrow K^*\mu^+\mu^-$ & $K^*e^+e^-$ Where are we now ...

Current status and expectations for the next year(s)

Scan of the slide shown in late 80's

Precision of UT elements improved dramatically ! The shape of UT, assumed intuitively >30 year ago, looks however as currently

Rencontres de Blois 2011

Current status: CPV phases

State-of-art is given by UT:

- Accuracy of sides is currently limited by models:

Extraction of $|V_{ub}|$

Calculation of
$$\xi^2 = \frac{B_{B_s} f_{B_s}^2}{\hat{B}_{B_d} f_{B_d}^2}$$

 Accuracy of angles (β,γ) is limited by experiment:

$$\sigma(\alpha) \sim 5^{\circ}, \ \sigma(\beta) = 0.8^{\circ}, \ \sigma(\gamma) \sim 20^{\circ}$$

The quark sector is well described by the CKM mechanism

Becomes almost a precision measurement thanks to large $BR(B^+ \rightarrow \rho^0 \rho^+)$ measured by BaBar Confirmation from BELLE is eagerly awaited !

Note:

UT geometry is such that the main constraint on NP comes from the comparison of the opposite elements i.e. angles vs sides

Rencontres de Blois 2011

Box Diagrams (B_d)

 β vs $|V_{ub} / V_{cb}|$ is largely limited by theory (~10% precision in $|V_{ub}|$) Note a discrepancy in $|V_{ub}|$ determined in inclusive and exclusive measurements : $|V_{ub}|_{incl} = (4.32\pm0.27) \times 10^{-3}$ and $|V_{ub}|_{\pi l v} = (3.51\pm0.47) \times 10^{-3}$ (A.Lenz FPCP2011)

- Continued tension between inclusive and exclusive results
- Possible improvement ???
 - $b \rightarrow u l v$ measurements
 - combined data + theory fits to $b \rightarrow c l v \ b \rightarrow \pi l v$

New measurement of $sin(2\beta)$ by BELLE

Indirect estimation: $\sin(2\phi_1) = 0.830^{+0.013}_{-0.034}$ (global fit, CKMfitter ICHEP10)

$\gamma vs \Delta m_d / \Delta m_s$ is limited by experiment: γ is poorly measured

Tension in the current CKM fit:

- Several possible hints for NP $(A_{SL}, V_{ub} \text{ from } B \rightarrow \tau v)$
- Large contribution from NP not excluded
- Precision measurement
 of γ in trees is important !!!

From Lunghi and Soni, arXiv:1010.6069 (see also CKM fitter, UT fit, etc., etc.)

Note:

 $\gamma = (74 \pm 11)^{\circ}$ used as input while CKM fitter gives $(71^{+21}_{-25})^{\circ}$ Direct measurement is less precise than SM prediction !

Rencontres de Blois 2011

New measurement of Δm_s by LHCb

Tagged time-dependent analysis using $B_s \rightarrow D_s^- \pi^+$ and $B_s \rightarrow D_s^- 3\pi^+$

Figure 3: Fit to the mass distribution of $B_s^0 \to D_s^-(\phi\pi^-)\pi^+$ (top left), $B_s^0 \to D_s^-(K^*K^-)\pi^+$ (top right), $B_s^0 \to D_s^-(K^+K^-\pi^-)\pi^+$ (bottom left) and $B_s^0 \to D_s^-3\pi$ (bottom right) candidates.

Small systematic uncertainty due to LHCb excellent proper time resolution

Rencontres de Blois 2011

asymmetry modulo $2\pi / \Delta m_s$

9

Prospects for *γ* **measurements**

Two strategies:

- Time-independent CPV: B⁺→D⁰K⁺, also B⁰→D⁰K^{*0}
- Time-dependent CPV: B_s→D_sK⁺, also B⁰→D⁻π⁺ (only possible
 @ hadron colliders)

Time-independent analyses of BaBar/BELLE

	BaBar	BELLI	Ξ	
Τ	$(68^{+15}_{-14} \pm 4 \pm 3)^{\circ} [B^{\pm} \to D^{(*)}K^{(*)\pm}]$	$(78 + 11 \pm 4 \pm 9)^{\circ}$	$[B^{\pm} -$	$\rightarrow D^{(*)}K^{\pm}$]
	[model-dep. GGSZ]		[model-	dep. GGSZ]
		$(77.3 \ ^{+15.1}_{-14.9} \pm 4.2 \pm 4.3$	$)^{\circ}$ [B^{\pm}	$\rightarrow DK^{\pm}$]
			[model-in	ndep. GGSZ]
	$\Gamma(B^- \to D^- K^-) - \Gamma(B^+ \to \overline{D}_{acc}K^+) \qquad 2\pi \pi - ain(S^- + S^-) aincr$	Belle with 772×10 ⁶ BB:	New ADS	arXiv:1103.5951
A _{ADS}	$=\frac{\Gamma(\mathcal{B}\to\mathcal{D}_{DGS}\mathcal{K}^{-})}{\Gamma(\mathcal{B}\to\mathcal{D}_{DGS}\mathcal{K}^{-})+\Gamma(\mathcal{B}^{+}\to\overline{\mathcal{D}}_{DGS}\mathcal{K}^{+})}=\frac{2r_{g}r_{g\pi}\sin(\delta_{g}+\delta_{g\pi})\sin\gamma}{r_{g}^{2}+r_{g\pi}^{2}+2r_{g}r_{g\pi}\cos(\delta_{g}+\delta_{g\pi})\cos\gamma}$	$\mathcal{R}_{DK} = (1.63 \ ^{+0.4}_{-0.4})$	${}^{4}_{1}$ (stat) ${}^{+0.07}_{-0.13}$	$\rm (syst)\big) \times 10^{-2}$
R	$=\frac{\Gamma\left(B^{-} \rightarrow D_{DCS}K^{-}\right) + \Gamma\left(B^{+} \rightarrow \overline{D}_{DCS}K^{+}\right)}{\Gamma\left(B^{+} \rightarrow \overline{D}_{DCS}K^{+}\right)} = r_{B}^{2} + r_{K_{T}}^{2} + 2r_{S}r_{e_{T}}\cos\left(\delta_{B} + \delta_{K_{T}}\right)\cos\gamma$	$\mathcal{A}_{DK} = -0.39 \stackrel{+0.2}{_{-0.2}}$	$ \begin{array}{cccc} 6 & +0.04 \\ 8 & -0.03 \end{array} $	preliminary
	$\Gamma(B^- \to D_{ce}K^-) + \Gamma(B^+ \to D_{ce}K^+)$			

 ADS: Doubly Cabibbo-suppressed D decays
 GLW: CP-eigenstates (Cabibbo-suppressed)
 GGSZ: Cabibbo-favoured multibody decays with Dalitz plane

CDF: ADS analysis of $B^- \rightarrow D^0 K^-$ decays

LHCb yields in $B^+ \rightarrow D\pi^+ \& B^+ \rightarrow DK^+$ (LHCb takes shape !)

Rencontres de Blois 2011

LHCb prospects for γ measurement in $B_s \rightarrow D_s K$

Large signals for $B_s \rightarrow D_s \pi$ useful for Δm_s measurement

- D_sK final state under study
- Expect world's first time-dependent CPV analysis for B_s→D_sK analysis in 2011

Combined estimated sensitivity for γ in 2011/2012 Run is ~5°

LHCb measurement of *γ* may hint to New Physics within next two years !

But I doubt that it will be conclusive with current theor. uncertainties Higher accuracy in γ (~1°) is definitely required here !

Box Diagrams (B_s mixing phase)

 $\phi_s^{J/\psi\phi} = -2\beta_s$ in SM is the B_s meson counterpart of 2β penguin contribution $\leq 10^{-3}$

 $\phi_s^{J/\psi\phi}$ is not really constrained so far **Theoretical uncertainty is very small:** $2\beta_s = -0.0368 \pm 0.0017$ (CKMfitter 2007)

Results from TEVATRON

CDF: based on 5.2 fb⁻¹ with improved particle Id, NN, flavour tagging (SST) and contribution of S-wave included.
DØ: based on 6.1 fb⁻¹ with improved selection and no same side tagger anymore.

CDF (assuming no CPV)

 $\tau_s = 1.53 \pm 0.025 \text{ (stat.)} \pm 0.012 \text{ (syst.) ps}$ $\Delta \Gamma_s = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}^{-1}$

D0

 $T_s = 1.47 \pm 0.04 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}$ $\Delta \Gamma_s = 0.15 \pm 0.06 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}^{-1}$ $\Phi_s = -0.76 \pm 0.37 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$

In both analyses a contribution from S-wave $(B_s \rightarrow J/\psi f^0)$ found to be non-significant Rencontres de Blois 2011

TEVATRON: ϕ_s *from B* \rightarrow *J*/ $\psi\phi$

LHCb: ϕ_s from $B \rightarrow J/\psi \phi$

SS tagging will significantly improve sensitivity \rightarrow Exciting prospects for the nearest future Expect $\sigma(\phi_s) \sim 0.1$ with about 1 fb⁻¹

-2

-1

0

-3

-4

-0.6

1 ၀ှ [rad]

□ CDF analysis (using muon IP cut) is underway

Expected stat. accuracy for 6 fb⁻¹ is 70% worse than in D0 (no IP cut)

Measurement of $\overline{\chi}_b = \frac{\Gamma(B^0 \to \overline{B}{}^0 \to \ell^+ X)}{\Gamma(B \to \ell^{\pm} X)} = f_d \chi_d + f_s \chi_s$ is important cross-check towards A_{SL}

New CDF result: $\overline{\chi} = 0.126 \pm 0.008$ is entirely consistent with LEP: $\overline{\chi} = 0.1259 \pm 0.0042$ (probable cause of the previous discrepancy – "ghost" muons not properly accounted in MC)

CPV in charm

 $\sim 476.000 \ D^{\star}$ -tagged $D^0 \rightarrow KK$

CDF world's most precise measurement: $A_{CP}(D^0 \rightarrow \pi^+ \pi^-) = (+0.22 \pm 0.24 \pm 0.11)\%$ $A_{CP}(D^0 \rightarrow K^+ K^-) = (-0.24 \pm 0.22 \pm 0.10)\%$

LHCb prospects (charm)

Excellent prospects for CPV studies: Expect about a few millions tagged $D^0 \rightarrow KK$ with $L \sim 1 \text{ fb}^{-1}$

- CPV study in $B_s \rightarrow \phi \phi$ requires very large data samples (~50 fb⁻¹ at LHC)
- Use other similar decays \rightarrow First observation of $B_s \rightarrow K^*K^*$ by LHCb

$BR(B_s \rightarrow K^*K^*) = (1.95 \pm 0.47 \pm 0.66 \pm 0.29) \times 10^{-5}$

on the upper side of expectations (compare to $B_d \rightarrow K^*K^*$ observed by BELLE)

c.f. CDF in 1 fb⁻¹ 1121±63 $B_d \rightarrow \pi^+\pi^-$ and 1307±64 $B_s \rightarrow K^+K^-$

 Expect first time-dependent measurements in 2011/2012 (including measurement of B_s lifetime in CP-even K⁺K⁻ final state

CDF: First search for CPV in $B_s \rightarrow \phi \phi$

Look for asymmetry in the distributions of CP-odd variables (triple-products) \rightarrow Ingenious way to measure CPV with low stat. samples before any tagged analysis !

 $\mathbf{v} =$

Candidates per 20 MeV/c²

L_{int} = 2.9 fb⁻¹

y² / ndf43.79 / 35

 $B_s^0 \rightarrow \phi \phi$

CDF Run II Preliminary

Penguin Diagrams: direct CP violation in B_{d.s}

Direct A_{CP} in 2-body B decays have been measured by the B-factories and CDF

- CP violation is well established in $B^0 \rightarrow K^+ \pi^-$ (Average A_{CP} =-0.098±^{0.012}_{0.011})
- $A_{CP}(B_s \rightarrow \pi^+ K^-) = 0.39 \pm 0.15 \pm 0.08$ (CDF with 1 fb⁻¹)

As seen by LHCb:

LHCb preliminary:

 $A_{CP}(B^0 \to K^+\pi^-) = -0.074 \pm 0.033 \pm 0.008$ $A_{CP}(B_s^0 \to \pi^+K^-) = 0.15 \pm 0.19 \pm 0.02$

Raw CP asymmetry in $B^0 \rightarrow K\pi$ decays: -0.086 ± 0.033

Penguin Diagrams (prospects with charm): LHCb

• Time integrated CPV asymmetries in D \rightarrow hh' decays: $A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to \overline{f})}$

Expect mixing induced CPV to cancel out in the difference as well as many other systematics (e.g. production and tracking asymmetries):

 $A_{CP}(KK) - A_{CP}(\pi\pi) = A_{CP}^{RAW}(KK)^* - A_{CP}^{RAW}(\pi\pi)^*$ (very clean measurement !)

Sensitivity to penguins is retained !

Measure raw asymmetries in flavour tagged samples

Current status: Rare Decays and their helicity structure

By far not fully representative list of topics:

To measure accurately the rates and perform a search:

- $B \rightarrow \tau v, K^* v v,$ etc. (e⁺e⁻ factories are unique to study such decays)
- $-b \rightarrow s\gamma$ (e⁺e⁻ -factories)
- Search for FCNC at the tree level
- Search for $B_{s,d} \rightarrow \mu\mu$ (hadron colliders)

To measure helicity structure of the amplitudes

- $B_d \rightarrow K^*\mu\mu$, $B_s \rightarrow \phi\mu\mu$ (possibility of the CPV analysi, with larger data sample) - $B_s \rightarrow \phi\gamma$, $B \rightarrow K^*e^+e^-$, $B_d \rightarrow K^*(K_s\pi^0)\mu\mu$

 $BR(Bs \rightarrow \phi \mu \mu) = [1.44 \pm 0.33(stat) \pm 0.46(syst)] \times 10^{-6}$

$B_d \rightarrow K^* \mu \mu$

Forward backward asymmetry, A_{FB}, is extremely powerful observable for testing SM vs NP Intriguing hint is emerging !!!

- BELLE, BaBar and CDF consistent with each other and SM
- Flipped C₇ scenario looks however more favoured from A_{FB} data

 With 1 fb⁻¹ LHCb expects ~1400 events, and should clarify existing situation. Expected accuracy in A_{FB} zero crossing point is ~0.8 GeV² in 1 fb⁻¹ $B_s \rightarrow \mu\mu$ Current status and prospects

New improved CDF analysis

- Twice larger data sample ~7 fb⁻¹
- Increased muon acceptance
- New Neural Network with improved signal efficiency
- Better background prediction

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

LHCb current limit is based on zero events in the most sensitive GL bins: $BR(B_s \rightarrow \mu\mu) < 5.6 \times 10^{-8} @ 95\%$ CL (37 pb⁻¹ of 2010 data)

Observed distribution of events

		GL bin				
		[0, 0.25]	[0.25, 0.5]	[0.5,0.75]	[0.75,1]	
(c ²)	[-60, -40]	39	2	1	0	
eV/	[-40,-20]	55	2	0	0	
<u>N</u>	[-20, 0]	73	0	0	0	
oin	[0,+20]	60	0	0	0	
ass	[+20, +40]	53	2	0	0	
Ϋ́	[+40, +60]	55	1	0	0	
	sum	335	7	1	0	
	bkg exp.	329	7.36	1.51	0.081	

LHCb prospects for the 2011/2012 LHC Run

ATLAS and CMS in particular should be very competitive !!!

Conclusions

- □ Thanks to the excellent performance of the LHC machine and detectors there are exciting prospects in the nearest future !
 - Increase of LHC data by a factor of ~ 30 / 100 for LHCb / ATLAS & CMS in 2011
- Also significant updates are expected from CDF / D0 & BELLE / BaBar
- □ Very interesting sensitivity reach is guaranteed !
 - $B_s \rightarrow \mu\mu$
 - $\phi_{\rm s}$ in $B_{\rm s} \rightarrow J/\psi \phi$
 - A_{FB} in $B_d \rightarrow K^* \mu \mu$