Review of Top Quark Physics

Meenakshi Narain

Brown University

23rd Rencontres de Blois May, 2011

discovery of the top quark

• in 1995 D0 and CDF observed and excess of events consistent with $p\overline{p} \rightarrow t\overline{t} \rightarrow W^+bW^-\overline{b}$

Mondal.⁴⁰ H. E. Montgomery, ¹² P. Mooney,¹ M. Mudan,²⁰ C. Murphy,¹⁶ C. T. Murphy,¹² F. Nang,⁴ M. Narain,¹² V. S. Narasimham,⁴⁰ A. Narayanan,² H. A. Ncal,²² J. P. Negret,¹ E. Neis,²² P. Nemethy,³⁰ D. Nešić,⁴ D. Norman,⁴² L. Oesch,⁷¹ V. Oguri,⁸ E. Oltman,³⁰ N. Oshima,¹² D. Owen,²³ P. Padley,³⁴ M. Pang,¹⁷ A. Para,¹² C. H. Park,¹² Y. M. Park,¹⁹ R. Partridge,⁴ N. Partridge,⁴ N. Partridge,⁴ N. Patridge,⁴ J. Perkins,⁴¹ A. Pertshkin,¹² M. Peters,¹⁴ H. Pickarz,¹³ Y. Pischalnikov,³³ A. Pluquet,⁴⁶ V. M. Podstavkov,³² B. G. Pope,²³ H. B. Prosper,¹³ S. Potopopescu,³ D. Pušeljić,²⁰ J. Qian,²² P. Z. Quintas,¹² R. Raja,¹² S. Rajagopalan,³⁸ O. Ramirez,¹⁵ M. V. S. Rao,⁴⁰ P. A. Rapidis,¹² L. Rasmussen,³⁸ A. L. Read,¹² S. Reuteroft,²⁷ M. Rijssenbeck,³⁸ T. Kockwell,²³ N. A. Roe,²⁰ J. M. R. Roldan,¹ P. Rubinov,³⁸ R. Ruchti,¹⁶ S. Rusin,³⁴ J. Rutherfoord,² A. Santoro,⁸ I. Sawyer,⁴¹ R. D. Schamberger,³⁸ H. Schellman,²⁹ D. Schmid,³⁹ J. Sculli,²⁶ E. Samulan,⁴¹ G. Suffer,⁴¹ H. C. Ihanker,⁴² P. Ki Sli yupur A. J. Rumor,¹⁴ P. Maylod I. M. Soso eeg. ⁶¹ H. Sun, ⁴⁴ N. Stephens,⁴⁴ M. L. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁹ D. A. Stoianova,³² D. Stoker,⁶⁴ S. Nyuer,⁴⁴ K. J. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁹ D. A. Stoianova,³² D. Stoker,⁶⁴ R. M. L. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁰ D. A. Stoianova,³² D. Stoker,⁶⁴ R. M. L. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁰ D. A. Stoianova,³⁴ D. Stoker,⁴⁰ H. M. L. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁰ D. A. Stoianova,³⁴ D. Stoker,⁶⁴ M. L. Stevenson,³⁰ D. Stewart,³² F. Stocker,⁴⁰ D. A. Stoianova,³⁴ D. Stoker,⁴⁰ D. Stoker,⁴⁰

K. Streets,²⁶ M. Strovink,²⁰ A. Taketani,¹² P. Tamburello,²¹ J. Tarazi,⁶ M. Tartaglia,¹² T. L. Taylor,²⁹ J. Teiger,³⁶ J. Thompson,²¹ T. G. Trippe,³⁰ P. M. Tuts,¹⁰ N. Varelas,²¹ E. W. Varnes,³⁰ P. R. G. Virador,²⁰ D. Vititoe,² A. A. Volkov,³² E. von Goeler,²⁷ A. P. Vorobiev,³² H. D. Wahl,¹³ J. Wang,^{12,1} L. Z. Wang,^{12,1} J. Warchol,³⁰ M. Wayne,³⁰ H. Weerts,²¹ W. A. Werzel,³⁰ A. White,⁴¹ J. T. White,⁴² J. A. Wightman,¹⁷ J. Wilcox,²⁷ S. Willis,²⁸ S. J. Winpenny,¹

VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS

RS

3 APRIL 1995

Me

and...

- 14 years later in 2009:
- Observed EWK production process: single top quark

W*

DØ Experiment Event Display

Tevatron

Run II Integrated Luminosity

19 April 2002 - 22 May 2011

top at LHC!

• First collisions at sqrt(s)=7 TeV in March 2010

LHC

outline

strong production ulletmass – cross section couplings ulletmuon branching fractions width Vµ neutrino charge asymmetry W charge \bullet proton beam antiproton beam decay igodolcouplings ulletW electroweak FCNC decays? Jet 2 (b) production electron new physics? single top quark

 $-|V_{tb}|$

- tt resonances
- process which mimic top (t')
- W', H+

top anti-top production

strong interaction

→ top-antitop pairs
(σ = 7.6±0.6 pb) @Tevatron
predominantly from quark
anti-quark annihilation (85%)

 $(\sigma = 164.6 \pm 15.7 \text{ pb})$ @ LHC predominantly from gluon fusion (87%)

standard model top decay

- t \rightarrow Wb with $B \approx 100\%$
 - − W→qq with $B \approx 67 \%$
 - − W→ ℓ v with *B* ≈ 11%
- final state signatures for top-antitop pairs

top production:

- Top pair production cross section
- Forward-backward charge asymmetry
- Electroweak production (single top)
- New particles produce or mimic top
- Boosted top production

why measure the ttbar cross section?

- cross section analysis
 - top production follows QCD prediction:
 - consistency between channels
 - decay branching fractions
 - is top produced by heavy particles
 - are there non-standard decays?

ttbar dilepton candidates:

 Select events with two High pT leptons, Missing Energy and jets, including b-tagged jets

b jet

ttbar dilepton candidates:

Properties of the selected dilepton events: lacksquare

ttbar lepton+jets candidates:

 Select events with one high pT lepton, Missing Et and jets (including b-tagged).

ttbar lepton+jets candidates:

Binned Likelihood Fits to the secondary vertex mass or another discriminant are performed to extract signal yields, b-tagging efficiency, constrain heavy flavor fraction and jet energy scale.

ttbar cross section $\sigma(\bar{tt}) = \frac{N_{events} - N_{bkg}}{\sigma(tt)}$

 $\mathcal{E} \bullet A \bullet L$

color charge asymmetry A_{FB}

- Tevatron: at LO, completely symmetric
- At higher orders, interference terms influence t and t-bar production asymmetrically, e.g.: 4-6% expected at NLO in the parton frame
- New Physics could enhance the asymmetry.

color charge asymmetry A_{FB}

• Dzero:

 $A_{fb} = 8 \pm 4\%$ (2 σ) Raw result (not unfolded)

mc@nlo
prediction: 1 ± 2%

color charge asymmetry A_{FB}

CDF

 $A_{fb} = 48 \pm 11 \% (>3\sigma)$ $A_{fb} = 15 \pm 5 \% (2\sigma)$ mc@nlo prediction: 6 ± 1% 8.8 ± 1.3% (Parton Level: corrected for reconstruction)

• Dilepton Events:

mc@nlo prediction: 6 ± 1%

 $A_{fb} = 42 \pm 16 \%$ (2.5 σ)

(Parton Level: corrected for reconstruction)

- Some tension between SM prediction and Tevatron data
- Higher order SM prediction at α_s⁴?
- Soft QCD effects?
- About 2x the data is available for a closer look!

color charge asymmetry -LHC

- Initial state is symmetric
- charge asymmetry visible in $|\eta_t| |\eta_{\bar{t}}|$
- Expected asymmetry A_C small ≈1.3%
- Z' or an axigluon could enhance the asymmetry

 $A_{C} = 0.060 \pm 0.134 \text{ (stat)} \pm 0.026 \text{ (syst)}$

 First such measurement, & expect L = 1 fb⁻¹ to start to compete with Tevatron

LHC

top

anti-top

η

single top production

 $\sigma_{\rm t}$ = 66 pb

• Direct Access to the W-t-b coupling (s_{st})

- Measure V_{tb} of the CKM directly
- CKM Unitarity

LHC(7TeV): $\sigma_s = 4 \text{ pb}$

- s and t channels are sensitive to different types of new physics
 - s-channel sensitive to new resonances: W', top pions, H⁺, SUSY, etc.
 - t-channel sensitive to FCNC, 4th generation, anomalous couplings
 - it is important to measure the rates independently
- Polarized top quarks
- Backgrounds to Higgs

Meenakshi Narain - Blois 2011

 $\sigma_{tW} = 15 \text{ pb}$

single top production

Meenakshi Narain - Blois 2011

single top production

• Tevatron Results until 2009:

2

0

6

4

 $\sigma (p\bar{p} \rightarrow tb + X, tab + X)$ [pb]

8

 combined s+t channel cross section measurements.

t-channel cross section measurement

new analysis by Dzero

t-channel single top production: LHC

- Identify variables representing the characteristics of single top
- Extract signal yields by fits to 2D spectra $\cos\theta^*$ vs η (jet) or
- multivariate techniques: Likelihood ratios, Boosted Decision Trees

t-channel single top production: LHC

- Identify variables representing the characteristics of single top
- Extract signal yields by fits to 2D spectra $\cos\theta^*$ vs η (jet) or
- multivariate techniques: Likelihood ratios, Boosted Decision Trees

Likelihood filter : t-channel vs. W+jets

Meenakshi Narain - Blois 2011

single top production:

t-channel cross section measurement

ATLAS: $\sigma_t = 53 + {}^{27}_{-24}$ (stat) ${}^{+38}_{-27}$ (syst) pb CMS: $\sigma_s = 83.6 \pm 29.8$ (stat+sys) ± 3.3 (lumi) pb

Meenakshi Na

b

σ_{tW} <158 pb @95% C.L.

First study of this channel

top production via a resonance?

- technicolor Z', massive gluons?
- Reconstruct mass of ttbar

signatures which mimic top

t' search at the tevatron

Meenakshi Narain - Blois 2011

Top Properties:

- Top Mass
- Mass (t v. tbar)
- Charge of Top Quark
- Top Quark Width

top quark mass measurement

- why is it important?
- most massive elementary particle
 - dominant contributor to radiative corrections

- how is its mass generated?
 - topcolor?
- does it couple to new physics?
 - massive G, heavy Z', H⁺, ...
- need to know the mass precisely.
 - Different influence in different final states?
 - Check consistency across channels.

top quark mass measurement

Challenges and Solutions:

- Jet energy scale: ±2%ΔJES ~ ±2GeVΔm_t
 - in-situ JES by using the constraint from hadronic W mass, can be done in I+jets and all hadronic channels, not in dilepton channel alone.
 - look at quantities insensitive to JES, e.g. lepton p_T .
- Jet-parton match: n_{jet}! Permutations
 - b-jet ID helps reducing the number of permutations.
 - kinematic fitter to pick up the permutation(s) with best X²

Tevatron

- Most precise measurements obtained using the Matrix Element technique
- For lepton+jets use the 2D fit in the Mtop and JES plane

LHC

- First measurements of the top mass @LHC
- Template Fits
- Lepton+Jets $R_{32} = M_{ijb}(t)/M_{ij}(W)$
- Dilepton: reconstruct most likely mass for the event

ATLAS

 $m_{top} = 169.3 \pm 4.0(stat) \pm 4.9(sys) \text{ GeV}$

37

Tevatron Summary

Mass of the Top Quark

CDF winter'11 $m_{top} = 172.7 \pm 0.6(stat) \pm 0.9(sys)$ GeV D0 winter '11

 $m_{top} = 175.2 \pm 0.6(stat) \pm 0.9(sys) \text{ GeV}$

Δm/m<0.6%

mass from cross section

- Quark masses depend on the renormalization scheme.
- Direct measurements use LO MC with parton shower to extract the mass from data
 - The renormalization scheme is not well defined.
- Is the mass from direct measurements (ie MC) the pole mass?
- compare with theory and across channels.
 - Extracted mass agrees with MC/ pole mass measured average within $\sim 1\sigma$

$$M_{top} = 167.5 + 5.4_{-4.9} (stat + sys) \text{ GeV/c}^2$$

mass from cross section

- Quark masses depend on the renormalization scheme.
- Direct measurements use LO MC with parton shower to extract the mass from data
 - The renormalization scheme is not well defined.
- Is the mass from direct measurements (ie MC) the pole mass?
- compare with theory and across channels.
 - Extracted mass agrees with MC/ pole mass measured average within ${\sim}1\sigma$

$$M_{top} = 166.4 {}^{+7.8}_{-7.3}(stat + sys) \text{ GeV/c}^2$$

mass (top) vs mass (anti-top)

- Test of CPT invariance
- CDF: Δm_{top} = -3.3 ± 1.4(stat) 1.0(syst)GeV

 Δm_{reco} tagged Entries/(15.0 GeV/c³) 091 091 060 061 010 001 060 061 060 061 CDF Run II Preliminary (5.6 fb⁻¹) --- Data sig: $\Delta M_{too} = 0.0 \text{ GeV/d}^2$ bkgd 80 60 40 20 -150 -100 -50 0 50 100 50 $\Delta m_{reco} (GeV/c^2)$ 2σ effect ?

D0: Δm_{top} = 0.8 ± 1.8(stat) 0.8(syst)GeV

top quark charge

- is it
 - t→W⁺b (Q_{top} = 2/3 e)
 - t \rightarrow W b (Q_{top} = -4/3 e)
- Exotic model
 - doublet (–1/3e,–4/3e) ?
 - D. Chang et al., PRD59 (1999) 091503
- pair W's & b's using kinematic fit
- determine charge of b-jet
- plot Q_W x Q_b
- D0 PRL 98, 041801 (2007)
 - 4/3e excluded at 92% CL
 - fraction of exotic quark pairs < 0.80 (90% CL)
- CDF result with 5.6/fb
 - p-value for SM: 0.33
 - p-value for XM: 1.4x10⁻⁴
 - exotic model XM excluded with 95% CL

top decays:

- W helicity (V-A)
- FCNC
- Spin correlations
- Color Flow

top quark coupling

- if top plays a special role in ewk symmetry breaking its couplings to • W bosons may differ from predictions
 - modifications to top quark interactions, in particular with weak gauge bosons, could yield the first signs of new physics
- most general CP-conserving W-t-b vertex involves four couplings

$$L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2}M_{W}} \partial_{v} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t$$

where, in the SM $f_{1}^{L} \approx 1, f_{2}^{L} = f_{1}^{R} = f_{2}^{R} = 0$

probing tWb vertex: ٠ Anomalous couplings in W helicity In top pair decays single top quark production and decay W^+ h

Both measurements can be combined to fully specify the tbW vertex Meenakshi Narain - Blois 2011

t-W-b coupling via W boson helicity

- sm predicts V-A coupling at W-t-b \rightarrow helicity of W boson $F_0=0.7$, $F_{-}=0.3$, $F_{+}=0.0$ (longitudinal, left-handed, right-handed) (V+A: $F_0=0.7$, $F_{+}=0.3$)
- model-independent measurement based on reconstruction of cosθ* distribution - angle between down-type fermion and top quarl[®] in the W boson rest frame
 - distribution of $\cos \theta *$ depends on the W boson helicity fractions

Meenakshi Narain - Blois 2011

W boson helicity – what do the data tell us?

anomalous t-W-b couplings

Left & Right handed Vector and Tensor couplings

$$L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2} M_{W}} \partial_{v} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t$$

where, in the SM $f_{1}^{L} \approx 1, f_{2}^{L} = f_{1}^{R} = f_{2}^{R} = 0$

 presence of anomalous couplings changes the production cross-section, and kinematics and angular distributions

s-channel("tb")

anomalous t-W-b couplings

- Limits on tensor couplings:
- Dzero analysis use single top and top pair events
- ATLAS analysis based on top pair events

FCNC decays of top quarks

- flavor changing neutral currents Events per 30 G highly suppressed in sm
- Search for $t \rightarrow Zq$
 - Dilepton+jets (CDF, 1.9 fb⁻¹)
 - B(t→Zq) < 3.7% @ 95% CL
 - Trilepton+ missingET
 - Dzero, 4.1 fb⁻¹
 - B(t→Zq) < 3.3%
 - ATLAS
 - B(t→Zq) < 17%
- Search for $qg \rightarrow t \rightarrow Wb$
 - $\sigma xB(qg \rightarrow t \rightarrow Wb) < 17.3$
 - (all limits at 95% CL)

conclusion

- top quark physics has come a long way since 1995
- Tevatron has delivered 11 fb⁻¹ @ 1.96 TeV
 - precision measurements of top quark properties
 - top quark mass measured to 0.6%
 - uncertainties below 1 GeV
- LHC is catching up quickly @ 7 TeV
 - beautiful results with 36 pb⁻¹ of data from 2010
 - almost 0.5 fb⁻¹ in hand \rightarrow competitive results very soon
- top production/properties generally consistent with SM
 - some intriguing deviations
 - charge A_{FB}
 - t' search

thank you

and many thanks to Tevatron and LHC collaborations