Searches for the Higgs Boson

Giovanni Punzi 23th Rencontres de Blois May 30, 2011

Producing the SM Higgs at hadron collider

Decay modes of the Higgs

NB In most analyses, no attempt is made to exclude contributions from another Higgs decay (e.g. $\tau\tau$ from a WW decay).

Experimental considerations

- Higgs channels are either rare, or swamped by a much larger background
- S or S/B are small, and often both.
- This led to pushing analysis technology to its limits
 - Using the information in the best possible way wide cuts and multivariate methodologies
 - Continuous improvements by small steps
- Usually combine several decay modes in a single plot to maximize sensitivity

Also use many sub-channels and combine them.

Multivariate Discriminants

Divide-and-conquer approach

- Separating events into multiple analysis channels and combining the results improves sensitivity.
- Allows to use separate, optimized discriminates for each channel based on:
 - specific signal contributions
 - specific background contributions
 - specific event kinematics

Searches for di-boson modes

- WW and ZZ crucial modes for Higgs searches above ~140 GeV
- Still useful down to the lower mass region
- Clearest experimental signatures.
- The main workhorse for LHC searches over the whole mass range

The di-boson path

- Measurements of the various di-boson processes are stepping stones towards H->diboson reconstruction
- CDF and D0 went through all those steps

Some WW Search Channels used at Tevatron

Channel	Main Signal	Main Background	Most Important kinematic variables	
OS dileptons, 0 Jets	gg→H	ww	$LR_{HWW}, \Delta R_{II}, H_{T}$	
OS dileptons, 1 Jet	gg→H	DY	ΔR _{II} , m _T (II,E _T), 🗗	Breakdown
OS dileptons, 2+ Jets	Mixture	t-tbar	$H_{T}, \Delta R_{\parallel}, M_{\parallel}$	
OS dileptons, low M _{II} , 0 or 1 Jet	gg→H	W+y	p _T (l2), p _T (l1), E(l1)	
SS dileptons, 1+ Jet	WH→WWW	W+Jets	$E_{T}, \Sigma E_{I}^{jets}, M_{ll}$	
Tri-leptons, no Z candidate	WH→WWW	WZ	$E_{T}, \Delta R_{II}^{close}, Type(III)$	Associated
Tri-leptons, Z candidate, 1 Jet	ZH→ZWW	WZ	Jet E _T , ΔR _{ij} , <mark>F</mark> ∕T	production
Tri-leptons, Z candidate, 2+ Jets	ZH→ZWW	Z+Jets	$M_{jj}, M_T^H, \Delta R_{WW}$	J
OS dilepton, electron + hadronic tau	gg→H	W+Jets	ΔR_{η} , T id variables	
OS dilepton, muon + hadronic tau	gg→H	W+Jets	ΔR_{IT} , T id variables	

D0 and CDF limits on $H{\rightarrow}WW$

- Updated spring 2011 (7-8 fb⁻¹)
- Both CDF and D0 manage to exclude a small region around 165GeV based just on WW mode.

CMS results on WW mode

CMS results on WW mode

ATLAS H→WW Analysis

ATLAS H \rightarrow ZZ Analysis

ATLAS combined limits

• Hot off the press - see talk by J.Elmsheuser on Wed for details

Application to 4th-Generation Models

- If a 4th generation of quarks exists, it enhanced the process: gg→H by a factor ~9, almost independent of masses involved. [Anastasiou, Boughezal, and Furlan, arXiv:1003.4677]
- The WW channel is ideal for this here select only $gg \rightarrow H \rightarrow WW$ processes
- Strongest limit comes from CDF (7fb⁻¹): Observed exclusion 124 < m_H < 202 GeV

(extends a previous result 131-204)

• If a a 4th quark generation exists, the Higgs cannot be in that interval.

Searches for b-bbar mode

- b-bbar expected to be the most frequent decay below ~140 GeV.
- Most stable in BSM models
- WW results from the Tevatron + EWK fit strongly favor this low mass region if the SM is valid
- Must rely on associated production VH due to high backgrounds.
- More accessible at the Tevatron

Heavy Flavor Identification

- Critical for searches involving $H \rightarrow bb$.
- B-tagging exploits information on:
 - Lifetime: displaced tracks and/or vertices
 - Mass: secondary vertex mass
 - Soft leptons
- Use multivariate techniques for best performance:
 - B-tagging efficiency: ~40-70%
 - Mistag rate: ~0.5-5%
 - Calibrated in data control samples.

Current b-bbar results (Tevatron only)

With 6fb⁻¹ the b-bbar channel is already getting below the line at lower masses (summer '10) - big expectations for summer 2011 !

Searches for $\tau\tau$

- Next fermion after b-bbar no more than 8% though
- As for b-bbar need to look for associated production to reject high backgrounds
- Might be enhanced in SUSY

H+X→ττjj

- $H \rightarrow \tau \tau$: second largest BR(~8%) at low mass.
- Select events with $\tau_{l}\tau_{h}$ +2j (I=e,µ) final states.
- Challenges:
 - Efficient categorization of 9 signal processes!

- Multijet and V+jets background modeling.
- Extra signals + sophisticated MVA approach yield major improvement in sensitivity wrt previous results!

Recent Tevatron results on H+X $\rightarrow \tau \tau j j$ (~6fb⁻¹)

- Use ττ + 1,2 jets
- Contribute to global SM combination

Search for $H \rightarrow \tau \tau$ at CMS

SUSY constraints from $H \rightarrow \tau \tau$ searches

 The first results from ATLAS and CMS extend beyond the previous Tevatron results with 2fb⁻¹

Searches for $\gamma\gamma$

- Proceeds via quark or V loops. Sensitive to new heavy particles or deviations from SM.
- Rare in SM, but good mass resolution.
- Can be enhanced in "fermiophobic" models

New CDF results - no MVA yet
Slight excess at 120GeV, but <2σ after trial factor

Tevatron SM H $\rightarrow \gamma\gamma$ Combination

- Expected @ 120: 9.1xSM Observed : 16.9xSM
- Reaching within one order of magnitude of SM prediction an analysis that was not planned to happen at the Tevatron.

Fermiophobic $h_f \rightarrow \gamma \gamma$ (Tevatron)

Fermiophobic = zero fermion coupling

- no gg production
- q-qbar modes suppressed (only via loops)
- net effect:enhanced $\gamma\gamma$ production (x30 @ 100GeV)

LEP Limit: >109.7 GeV
DØ's recent (8.2/fb): >112 GeV
CDF new (7/fb): >114 GeV (not yet combined)

$H \rightarrow \gamma \gamma$ at ATLAS

- First preliminary result uses 38pb⁻¹
- 95% upper C.L. limits @ ~25xSM
- Projected ~4xSM with 1 fb⁻¹

When in search for the unknown, you don't know what you are going to find.

Update on W-jj excess

- 3.2σ excess (w/ trial factor) in Mjj spectrum in W+2jets events [PRL 106,171801 (2011)]
- Since publication, many papers cited this result and proposed possible interpretations, mostly based on NP
- Interesting SM suggestion: could this be top background ? [arXiv:1104.4087, arXiv:1104.3790]
- Would imply a huge error in previous top cross section measurements however, when one has an unknown peak with the shape of one of his background, one needs to consider the possibility seriously.

Update on W-jj excess

- But, the answer is NO this cannot possibly be top background
 - There is no significant tagged component
 - Top-enriched control samples show perfect agreement with simulation
 - When using actual detector simulation, the top background does not peak at the right place

FAQ: Maybe it's just statistics why aren't you showing the full sample anyway ?

Additional sample of 3fb⁻¹ of data

- Looks just the same as the initial 4.3fb-1
- 2.85σ excess including (unneeded) trial factor
- Fitted mass of the excess 147 ± 5 GeV compatible with first sample

Updated W-jj with 7.3fb⁻¹

- Now closer to 5 sigma
- It was not just a statistical fluctuation
- Serious issue for CDF to understand this.
- Larger sample now allows for more detailed studies
 stay tuned for updates.

"Low Mass" combination (ICHEP 2010)

"High Mass" combination (Moriond 2011)

- Better than ~2xSM sensitivity for all mass points below 200 GeV
- At m_H=115 GeV expected limit 1.45xSM
- New exclusion at 95% C.L.: 158-173 GeV (expected: 153-179 GeV).
 - Expected exclusion as of ICHEP 2010 was 156-173 GeV.

Global SM Electroweak Fit

- In the assumption of SM Higgs, one should keep into account indirect contraints as well
- LEP + Tevatron (Fall 2010) :
 - 2σ interval: [115,152] GeV

 $M_H = 120.2^{+17.9}_{-5.2} \text{ GeV}$

- LEP + Tevatron (Moriond 2011):
 - 2σinterval: [115,138] GeV

 $M_H = 120.2^{+12.3}_{-4.7}$ GeV

- Fit with LEP + Tevatron + LHC (H→WW) searches (Moriond 2011) :
 - 2σ interval: [115,137] GeV

 $M_H = 120.2^{+12.3}_{-4.7} \text{ GeV}$

If SM is correct, Higgs mass is determined to <10%

Indirect constraints are going to improve as well - see M. Verzocchi talk

ATLAS prospects

• 1fb-1 cover the full range above ~130, driven by VV modes

CMS prospects

• 1fb-1 cover the full range above ~130, driven by VV modes

CMS prospects

• 5 fb-1 yield 4σ the full range >130 GeV, driven by VV modes

Tevatron prospects 2011

•Below the line for the whole range

- •Better at low masses driven by VH, H->bb
- Complementary information to LHC

Tevatron prospects 2011

We live in the Higgs era

- Coming to terms with EW symmetry breaking.
- We know quite a lot already about the Higgs
 - The SM Higgs mass is very constrained
 - No model with a rate >> SM is viable.
 - Coexistence of a SM-like Higgs and a 4-th quark generation is very nearly excluded
- The next step is finding out whether SM is right or wrong. Should not take long. Surprises might come up.
- A new era will follow we don't know its name.
- We should enjoy this special time we are so lucky to live in.

BACKUP

Tau tau + b

Conclusions

• The Tevatron Higgs program continues to make steady progress in sensitivity and starting to corner the SM Higgs boson:

- With the dataset collected by end of 2011 plus additional improvements underway expect a-priori exclusion at 95% C.L. (if the Higgs doesn't exist) or >2.5σ sensitivity for m_H<185 GeV.
- Large dataset and refined analysis techniques hold a lot of promise for BSM Higgs searches, with the potential for surprises around the corner. Expect significantly improved results in coming months.
- Exciting times ahead. Stay tuned!

Electroweak Fit – Tevatron Higgs Constraints

- M_H from fit w/o Higgs searches: $M_{H_*}=95.7^{+30.3}_{-24.2}$ GeV
 - Central value $\pm 1\sigma$:
 - [52,171] GeV 2σinterval:

- Fit with LEP & latest Tevatron searches:
 - CL_{s+b}^{2s} central value $\pm 1\sigma$:

- Green error band from including / excluding theoretical errors in fit
 - Theoretical errors included in χ^2 with "flat likelihood term"

CMS outlook

Just how excluded is it?

• SM Higgs of $162 < m_H < 166 \text{ GeV}$ excluded @99.5% CL

Orange band: assumed analysis improvements wrt 2007 analysis (x1.5 and x2.25)

- Limits have improved faster than $1/\sqrt{L}$ due to analysis improvements.
- Major effort underway to continue to improve intrinsic sensitivity:
 - Optimized object identification/resolution
 - Optimized selections and signal-to-bckg discrimination
 - Reduced systematic uncertainties
 - Adding new channels...