Cosmic Rays

I. Tkachev

Institute for Nuclear Research, Moscow

1 June 2012, Blois

Quest for cosmic ray sources.

Greisen-Zatsepin-Kuzmin Effect

Greisen-Zatsepin-Kuzmin Effect

- CR detected at $E > 10^{20} \text{ eV}$ should originate within R < 100 Mpc. This also leads to a cut off in the spectrum.
- Universe is inhomogeneous at these scales.
- If CR are protons, deflections in magnetic fields are expected to be small.

Charged particle astronomy should be possible and we should see sources.

Greisen-Zatsepin-Kuzmin Cut-off

 No cut-off in the AGASA data. (AGASA was an array of surface detectors (SD))

AGASA collaboration (2003)

 HiRes announced observation of the GZK. (HiRes was an observatory of fluorescent light detectors (FD)) HiRes collaboration (2007)

New generation of CR observatories

PAO

(Hybrid, Southern hemisphere)

Telescope Array

(Hybrid, Northern hemisphere)

- 1600 SD's
 1.5 km spacing, 3000 km²
- 4 FD's

- 507 SD's
 - 1.2 km spacing, 700 km²
- 3 FD's

New generation of CR observatories

PAO

Telescope Array

Water tanks

3 m² scintillators

Telescope Array SD spectrum

TA collaboration, arXiv:1205.5067

See also G. Thomson, this conference

Note: TA is using the same type of SDs as were employed by AGASA

Theoretical modeling

 $J_{source} \propto E^{-eta} (1+z)^m$

PAO spectrum fitted by Fe primaries Auger collaboration, ICRC 2009 HiRes spectrum fitted by proton primaries Berezinsky, Gazizov, Grigorieva (2005)

Dramatically different conclusions at face value ...

Theoretical modeling

Galactic to Extragalactic

PAO spectrum fitted by Fe primaries Auger collaboration, ICRC 2009 HiRes spectrum fitted by proton primaries Berezinsky, Gazizov, Grigorieva (2005)

Dramatically different conclusions at face value ...

Spectra comparison

Working Group, UHECR2012

After indicated constant energy shift

- Auger/HiRes/TA are in agreement within systematic uncertainties
- At E < 40 EeV all spectra match

True energy scale is still unknown, but may be the dip position reveals it?

CR composition

Intermediate energies:

All experiments agree on light composition at

 $E \sim E_{
m ankle}$

Bluemer et al, Prog.Part.Nucl.Phys. 63 (2009) 293

Upper limits on the dipole

Anisotropy amplitude of the first harmonic in RA

PAO, Astropart.Phys. 34 (2011) 627

Galactic to Extragalactic transition

At highest energies

HiRes fitted by proton primaries

PAO fitted by mixed composition

We cannot use dip position to calibrate energy yet.

CR composition

At highest energies:

PAO - heavy nuclei

HiRes- protons

LHCf

Spectra of single γ showers at $\sqrt{s} = 7 \text{ TeV}$ and MC predictions.

None of the original models perfectly agree with data.

LHCf, Phys.Lett. B703 (2011) 128

EAS with Re-tuned CR Models

Before LHC

With LHC

Cross section and multiplicity fixed at 7 TeV

Pierog, UHECR2012

AGNs is not the only interpretation

Tensions within AGN interpretation:

- Signal is not consistent with the hypothesis; Virgo problem.
- Chemical composition Fe but should be p.
- Local AGNs are weak.
- No signal in HiRes.

Gorbunov, Tinyakov, I.T., Troitsky, arXiv:0711.4060, arXiv:0804.1088 Fargion, arXiv:0801.0227

AGNs is not the only interpretation

Tensions within AGN interpretation:

- Signal is not consistent with the hypothesis; Virgo problem.
- Chemical composition Fe but should be p.
- Local AGNs are weak.
- No signal in HiRes.

- Cen A is the closest radiogalaxy by chance projected on LSS
- It is outside of HiRes field of view

This provides an alternative explanation for the Auger signal.

Gorbunov, Tinyakov, I.T., Troitsky, arXiv:0711.4060, arXiv:0804.1088 Fargion, arXiv:0801.0227

Evolution of the signal in Auger data

AGN

Cen A

AGN signal became weaker

Cen A signal persists Virgo paucity persists

PAO, ICRC 2011

Search for AGN signal in Telescope Array data

'Blind' test of AGN hypothesis

Original Auger AGN hypothesis is not supported by TA data.

TA collaboration, arXiv:1205.5984

Test of AGN hypothesis in Northern Hemisphere

Telescope Array

TA collaboration, arXiv:1205.5984

AGASA+Yakutsk+HiRes @ common energy scale

Rubtsov et al, JETP Lett. 95 (2012) 569

Original Auger AGN hypothesis is not supported.

Puzzling anisotropy (of hadronic CRs) at low energy

Flux variations at the level of a few 10^{-4}

20 TeV, IceCube, arxiv:1105.2326

-7.6 11.4 s.d.

2 TeV, ARGO-YBJ, arxiv:1010.4401

Interpretational problems:

- Larmor radius of a 10 TeV proton in a 2µG magnetic field is 0.005 pc.
- Decay length of 10 TeV neutron is 0.1 pc

No compelling explanation found yet.

Gamma astronomy

Fermi Lat study of Cen A

Red diamonds: Fermi-LAT data

Single zone SSC model explains multiwavelength SED, except for the HESS data.

It is unlikely that protons can be accelerated to energies above $4 \times 10^{19} \text{ eV}$, although this is possible for heavier ions.

Fermi collaboration, ApJ 719 (2010) 1433

Electromagnetic Cascades and TeV & Rays

Universe is not transparent to TeV radiation $\gamma\gamma \rightarrow e^+e^-$. Resulting cascades overproduce GeV γ -ray, not observed by Fermi LAT. Why?

Electromagnetic Cascades and TeV & Rays

Universe is not transparent to TeV radiation $\gamma\gamma \rightarrow e^+e^-$. Resulting cascades overproduce GeV Y-ray, not observed by Fermi LAT. Why?

Solution 1:

Magnetic fields $B > 10^{-17} G$ sufficiently disperse GeV γ -ray cascades.

Neronov, Vovk, Science 328 (2010) 73

Solution 2:

UHE protons produce TeV γ -ray continuously en-route from source. Requires B $< 10^{-14}$ G.

Essey et al, ApJ. 731 (2011) 51

Extragalactic γ -ray background

UHECR and extragalactic γ -ray background

UHE primary p and secondary γ and GZK u

Limits on source properties are emerging. Injection spectrum $\beta > 2.4$ and evolution parameter m < 4. Revised upper bounds for GZK neutrino.

> Gelmini, Kalashev, Semikoz, JCAP 1201 (2012) 044 , see also Berezinsky et al, Phys. Lett. B 695 (2011) 13 Ahlers at al, Astropart. Phys. 34 (2010) 106

GRB models of UHECR are in problem

Neutrino flux for cosmic ray normalized models

Derived using tight constraint on spatial and temporal coincidence of ν with a γ -ray burst.

GRBs are not the only sources of cosmic rays

IceCube, Nature 484 (2012) 351

See also D. Williams, this conference

Search for UHE photons

Limits on photon flux. Exotic models ruled out.

Multimessenger WG, UHECR2012

Search for UHE photons

Limits on photon flux and projected sensitivities.

Multimessenger WG, UHECR2012

Conclusions

- Greisen-Zatsepin-Kuzmin cut-off
 - The cut-off is firmly established, it's nature is under study
- Cosmic ray composition
 - Protons or Heavy Nuclei?
 - Disagreement between PAO and HiRes/TA is not understood yet
 - What are the fractions of photons and neutrino?
- Cosmic ray sources and anisotropy
 - Large number of new γ -ray sources detected by H.E.S.S., MAGIC, VERITAS and Fermi
 - Anisotropy of TeV CR confirmed by ARGO/YBJ and IceCube
 - Is local population of AGNs relevant for UHECR?
 - GRBs are out of favour
 - Is charged particle astronomy possible?
- Shower development
 - New physics?
 - LHC data are streaming and should improve understanding