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Gravitational Waves (GW) 

•  In free falling laboratories the 
only measurable effect of 
gravitation are tides, i.e. 
relative acceleration of 
particles separated in space 

•  Relativity requires that 
perturbations in the 
gravitational field can only 
travel at the speed of light 

•  GW: waves of tidal 
accelerations traveling at the 
speed of light (Einstein 1916) 
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Gravitational Waves 

•  Caused by acceleration of mass and energy: 
–  Binary systems, collapses, primordial fluctuations 

•  Detected for the first time from energy loss of binary systems 
(PSR 1913+16) 
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Detecting Gravitational Waves 
•  Waves give particles 

“tidal” accelerations 
•  Particles send laser 

beams to each other. 
•  Acceleration of 

source modulates 
frequency of light by 
Doppler effect 

•  Tides are 
proportional to arm-
length L: wide is 
good 

•  Signal h∝ΔL/L 
 

Blois June 1, 2012 S. Vitale 4 



•  Coupling of GWs to matter is very different from EM. 
•  Very weak, h << φ/c2 = GM/rc2  → δL/L ~ h ~ 10-21 to 10-24. 
•  Weakness ⇒ negligible scatter, absorption: perfect messengers! 

Waves penetrate: 
–  any matter 
–  black holes from the event horizon 
–  early universe from singularity 

•  Waveforms record the motion of distant matter and give distance 
to source. 

•  Have huge energy flux; luminosity scale is c5/G ~ 3.6 × 1059 erg/
s. 

•  Black hole mergers are more luminous than the EM emission 
during same time of rest of the universe put together! 

Gravitational Waves 
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Like listening to the universe 
•  GWs have many analogies to sound: waves of spacetime 
•  Detectors are our “microphones” 

–  1D response, not an image. Converts to sound: you can listen to 
GWs 

–  Record the waves coherently, tracking phase and amplitude 
–  Nearly omni-directional, but linearly polarized 

•  GW astronomy adds the audio dimension to our ability to monitor the 
dynamical universe. 
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The gravitational wave spectrum 
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GW observatories 
•  LIGO, VIRGO likely to make first detections 2015-17. 

–  Primary sources: neutron star and stellar black hole 
binaries, ~tens/yr. 

–  Limited: low SNR (< 20), stellar-mass sources, f > 10 Hz. 
•  Pulsar timing could open nHz band before 2020. 

–  Signal confusion, limited information: 3 cycles/10 yr. 
•  GW detection in space opens the richest GW band: mHz. 

–  High SNR (~103), thousands of resolvable signals. 
–  Astronomy’s focus is moving toward space-interferometer 

capabilities:  
•  Massive galactic black holes, key also to galaxy 

evolution. 
•  Transient astronomy: major ground-based facilities 

coming. 
•  The high-redshift universe: astronomy's next frontier. 
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Source: A. Lazzarini, modified 

Ground Based Laser Interferometric Gravitational 
Wave Detector Network: A single observatory 

GEO600 
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Ground-based detectors 

•  The basic scheme: a two equal arm laser interferometer . 
•  Test-masses are suspended mirrors. 
•  Large circulating power (10-50 kW). 
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Interferometer technology 
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ultra high quality 
mirrors 

High power laser 

Large vacuum 
systems 



Science with ground based detectors 

•  Main sources at frequency 
>10 Hz 
– Neutron-Star Binary 

coalescences 
– Stellar Black-Hole 

Binaries coalescences 
– Non-spherical pulsars 
– Stochastic bakground 
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Current best sensitivites 
•  First generation detectors (LIGO/Virgo) have reached design 

sensitivities) 
•  Power spectral density in h √PSDh < 10-22/√Hz  @ 100 Hz 
•  No detection yet but many significan upper limits 
•  Operation terminated: second generation detectors funded and 

under construction 
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CaJAGWR Seminar, Caltech, Nov 29, 2011 
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Second generation detectors 
•  Advanced LIGO (at LIGO sites, US) 
•  Advanced Virgo (at Virgo site Italy) 
•  ‘かぐら’. Kagra (at Kamioka site in Japan) 
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Binary coalescences. From 1° to 2° generation 

•  This is the most likely signal. Target signal to noise ratio 
SNR>8 
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Advanced network 
•  Operational at design sensitivity ≈ 2017 
•  Network locates source in the sky 
•  Gravitational Astronomy will begin (population studies, test of merger 

dynamics etc.) 
•  3° generation under study (Eistein Telescope, Kagra) 
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Space-borne observatories 
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•  Two main designs 
–  LISA three-arm interferometer studied by ESA and NASA up to 

formulation level (>10 years) 
–  eLISA (NGO) two-arm interferometer. Studied by ESA as an ESA 

lead mission (simplification of LISA, studied one year) 
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1 ×106 km 

eLISA Free falling particles 
( 0.3 fg/√Hz-1/2 @ 0.1 mHz) 

Interferometric doppler link 
 ( 40 pm /√Hz-1/2  @ 3 mHz) 

Spacecraft 
(no mechanical contact) 
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Interferometric doppler link 
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Three independent heliocentric orbits: detector rotates 
within GW and gives source location 
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Non contacting spacecraft and no force on test-mass 
•  Position of spacecraft relative to test-mass is measured by  

local  interferometer 
•  Spacecraft is kept centered on test-mass by acting on micro-

Newton thrusters. 
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The laser 2-ways Doppler link 
•  frequency modulation of received beam gives 

difference of acceleration between emitter and 
receiver 
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Test-
mass 

Test-
mass 

The link is split in three 

Test-
mass 

Spacecraft 
(optical bench) 

Test-
mass 

Spacecraft 
(optical-bench) 

•  2×test-mass-to-spacecraft measurements 
•  2×spacecraft-to-spacecraft one-way links 
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LISA Instrument 
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• Drag-free along 
sensitive direction 
• Test-mass control 
along the remaining 
ones 
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The Gravity reference Sensor (GRS) 



The optical bench 

•  Carries all needed interferometry 
•  Monolithic ultra high stable 

structure obtained by silica bonding 
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ground based 

Science with space-borne GW detector 

Local gravity noise 



eLISA revolutionary science  
•  Massive BHs (105--107 Mo)  

•  Measurement of mass at z = 1 to ±0.1%, spin a/M to ±0.01.  
•  Mass function, central cluster of black holes in ordinary galaxies to z = 

0.5. 
•  Evolution of the Cosmic Web at high redshift 

•  Observation of objects before re-ionisation: BH mergers at z >> 10.  
•  Testing models of how massive BHs formed and evolved from seeds. 

•  Compact WD binaries in the Galaxy 
•  Catalogue ~2000 new white-dwarf binary systems in the Galaxy. 
•  Precise masses & distances for dozens of systems + all short-period NS-

BHs. 
•  Fundamental physics and testing GR 

•  Ultra-strong GR: Prove horizon exists; test no-hair theorem, cosmic 
censorship; search for scalar gravitational fields, other GR breakdowns. 

•  Fundamental physics: look for cosmic GW background, test the order of 
the electroweak phase transition, search for cosmic strings. 
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           Arp 299                          NGC6240                             Abell 400                           NGC 3393 

Super-massive black-hole mergers 

•  High SNR to z ≈ 15 
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Observing the entire universe 
•  ELISA will detect ALL the 

mergers in the universe in its 
frequency band, even out to 
z=15 and beyond if they are 
happening.  

•  BBH rest mass 104 – 107 
•  Luminosity distance  1 – 50 % 
•  Sky location 3° - 10 ° 
•  Masses to ±0.5% 
•  Spin magnitudes to ±0.01.   
•  Spin alignments 
•  No complex modeling needed: 

these data are directly encoded 
in phase of inspiral waveform.  
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How did SMBHs form and grow? Are BH BH? 
•  eLISA should detect 10-200 BH-BH 

binary mergers in 2 years. 
•  enough mergers to discriminate 

among different seed models (early or 
late), accretion models, metallicities. 

•  Test GR in strong gravity at the edge 
of a black hole. 
–  Compare merger in detail with 

numerical simulations in GR (and other 
theories). 

–  Look for violations of cosmic 
censorship: still a conjecture in GR! 

–  Look for evidence of other gravitational 
degrees of freedom; test energy and 
angular momentum balance (before and 
after). 

M. Volonteri: “Most if not all 
massive black holes are in  

the LISA band at some point  
in their cosmic evolution.”"
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Extreme Mass-Ratio Inspirals: EMRIs 
•  Stellar-mass BH capture by a 

massive BH: dozens per year to 
z~0.7. 

•  We have measured the mass of the 
GC BH using a few stars and with at 
most 1 orbit each, still far from 
horizon. 

•  Imagine the accuracy when we have  
105 orbits very close to horizon!  
GRACE/GOCE for massive BHs. 
–  Prove horizon exists. 

–  Test the no-hair theorem to 1%.  

–  Measure masses of holes to 0.1%,  
spin of central BH to 0.001.  

–  Population studies of central and  
cluster BHs. 

–  Find IMBHs: captures of 103 Mo 
BHs. 

34 
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Compact binaries  

•  e-LISA will make major contributions to the study of binary 
evolution and the endpoint of stellar evolution. 
1.  The mission has guaranteed (known) sources: verification binaries 

Known  
binaries 
and  
strongest 
1000 
simulated 
binaries 
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Compact binary astrophysics 
•  Synergy with GAIA, upcoming large-area surveys, radio 

pulsar binary surveys 
•  eLISA supplies unique new information: 

– Orbital inclination (helps determine masses) 
– Accurate distance (for known masses, or for chirping 

systems) 
– Discovery of distant/obscured/faint binaries. 

•  These observations address key astrophysics issues, 
e.g.: 
– Binary evolution, common envelope evolution 
– Precursors of Type Ia supernovae in the Galaxy 
– Population studies of Galaxy, tracers of star formation 
–  Interacting binaries, mass transfer, tides 
– Population studies of NS-NS, NS-BH, BH-BH binaries 
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LISA: reaching even further 
•  LISA: better low frequency sensitivity (5 million km) 
•  Third arm:  

–  polarisation of short-lived events.  
–  Instrument noise in-situ calibration 
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eLISA→LISA (gross picture) 
•  Galactic binaries: 

–  resolvable binaries 3000→10000 
–  verification binaries 8→20 
–  sky location 10°→1° 
–  With electromagnetic counterpart: distance to 10% location to 0.1 ° 
–  Spectral properties of galactic foreground 

•  BH binaries 
–  number 20-200 → 50-5000 
–  z 15→20 
–  Location ≈1° 
–  Distance: see Cosmology 

•  EMRI 
–  number 10→50 
–  SNR 20→30 

•  Detection of stochastic background 
–  Detection based on noise modeling → detection in Sagnac Mode 
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LISA gives absolute distances 

•  GW are standard sirens: absolute luminosity distances to chirping 
binary systems can be derived directly from: 

  

•  Distances DL given in light-seconds: no calibration needed  
•  Accuracy better than 5% at z=3, limited by micro-lensing 
•  Requires approximate location of source to de-correlate source and 

antenna patterns.  
•  Third LISA arm gives all also for short lived events like 

coalescences and provides accurate and independent measurements 
of H0 and equation of state parameter  w. 

•  Using EMRIs, LISA can determine H0 to ±0.4%, i.e.  ±0.3 km s-1 
Mpc-1 in 3 months. 

•  Using massive mergers out to z = 3 and fit to EM observation gives 
w to 2-4 % 
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GW from 10-18 to 10-10 s after Big Bang 
•  Relic stochastic background of GW predicted in various scenarios, cosmic 

strings, phase transition. 
•  Waves in the eLISA/LISA band originates from phenomena between 10-18 to 

10-10 s after big bang, i.e. 0.1-1000 TeV scale 
•  LISA can turn-off sensitivity to GW  (Sagnac interferometer mode) and 

calibrate background instrument noise 
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Status of hardware 
development:LISA Pathfinder 

•  ESA’s demonstrator of measurement scheme 
•  A verification of eLISA/LISA flight hardware 
•  Launch in 2014 

Blois June 1, 2012 S. Vitale 41 



Test-
mass 

The Basic Element of one LISA Arm:  
the Test-mass to Test-mass Doppler Link 
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Test-
mass 

Laser link 



Noise in the Doppler Link: 1 force noise 

•  Tidal acceleration due to GW cause modulate frequency of 
received beam  

•  True forces accelerates test-mass relative to inertial frame. 
Accelerated observer will detect frequency modulation even in 
the absence of waves: a local source of disturbance 

 

•  Force noise 100% of noise <1 mHz. Can be tested in 0-g only 

Test-
mass 

Test-
mass 

Laser link 
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Noise in the Doppler link: reference frame and 
interferometer noise 

•  Reference frame noise: misaligned measurements causes link 
to pick-up large motion of spacecraft relative to test-masses.   

•  A  local source of disturbance: 30% of noise >10 mHz. Can be 
tested in 0-g only 

•  Interferometer readout noise (testable in 1 g) results from: 
–  local contributions (65% of noise>10 mHz): electronics, 

photodiodes etc..  
–  non-local contribution : laser frequency noise. Suppressed 

by differentiating two arms à la Michelson.  (5 % of noise 
>10 mHz, after suppression) 
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Spacecra>	  
(op@cal-‐bench)	  

Test-‐
mass	  
Test-‐
mass	  

Spacecra>	  (op@cal-‐bench)	  
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Noise in the Doppler link: 3. Readout noise 
•  Interferometer readout noise results from: 

–  local (spacecraft level) contributions:  
•  electronics, photodiodes etc..  
•  65% of noise>10 mHz 

– non-local contribution (constellation level):  
•  laser frequency noise, indistinguishable from 

frequency modulation 
• Suppressed by differentiating two arms à la 

Michelson.  
•  (5 % of noise >10 mHz, after suppression) 

•  All of interferometer noise is testable in 1 g 
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The aim of LISA Pathfinder 
•  A test of the entire local measurement 

–  Force noise 
–  Reference frame noise 
–  Local interferometer noise 

•  Deliverable: the physical model for test-mass geodesic motion 
–  Show forces and reference frame effects  are within requirements 

for (e-)LISA,  quantitatively understood and physically modeled. 
•  A verification step in the development of e-LISA/LISA using same 

hardware/processes: 
–  GRS 
–  Micro-thrusters 
–  Monolithic, silica-bonded optical bench 
–  Master laser 
–  Disturbance reduction system, including gravitational control 

and free test-mass technique (DFACS) 
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LISA and LPF requirements  
(differential acceleration) 

 •  Requirements are relaxed for the test conditions not for the 
hardware design 
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LISA Pathfinder concept 

•  Take away the long-arm interferometer 
•  Substitute the long-arm laser beam reference, with a second 

(quasi-)free test-mass 
•  One (e-)LISA arm squeezed into one spacecraft 
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The LTP 

•  Two local interferometers 
on a high stability optical 
bench 

•  Two Au-PT test-masses  
enclosed in their GRS 
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The GRS: test-mass 
•  Flight test-masses  
•  Very high density homogeneity 

(<<1µm pores) 
•  CoG at geometrical center within 

±2 µm 
•  Magnetic susceptibility at  
χ = –(2.3±0.2)×10-5 

•  Magnetic moment < 4 nAm2 
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The GRS 

•  GRS electrode housing FM1 
•  Under final acceptance 
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The Optical Bench and Structure 

•  Optical bench and structure 
•  Successfully tested end-to-end for optical 

performance 
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LPF expected performance 

•  Interferometry tested end-to 
end in thermal vacuum 
chamber with entire SC on, 
and solar radiation simulator 

•  Performance of 
interferometers better then 
requirements: better than 5 
pm/√Hz  and 0.3 nrad/√Hz at 
at 10 mHz  

•  Upper limit on force noise 
from dedicated torsion 
pendulum experiments close 
to requirements 
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G.D.Racca | Science Working Team, ESTEC, Noordwijk 30th November 2011   

Sine Vibration Test 
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Experiment implementation  
•  Method: a sequence of dedicated investigations in a closed packed 

arrangement  
•  Preparation:  

–  Experiment design and theoretical analysis 
–  Experiment simulation on mission simulator  
–  Supporting experiments in the laboratory and from flight hardware 

testing campaign 
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Simulation on end-to-end 
mission simulator 

•  Performance expected significantly 
better than requirements. 

•  Estimate of major contribution 
demonstrated to be feasible. 
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LPF Requirements 

(e-)-LISA requirements 



Status of development 
•  LISA Pathfinder launch in 2014  
•  LISA studied for more than a decade as a joint NASA-ESA mission. 
•  With JWST-based  NASA crisis, ESA has studied eLISA (NGO) as 

ESA only mission 
•  Mission assessed to be feasible within budget for and ESA Large 

Mission and considered as a candidate for a launch at next slot (L-1) 
•  ESA´s scientific review committee unanimously ranked it first for: 

–  scientific interest 
–  strategic value for science  
–  strategic value for the project in Europe 

•  For programatic reasons it was not given the go ahead for this slot 
•  ESA will pursue technology developments not covered by LISA 

Pathfinder 
•  Adoption likely after LISA Pathfinder flight 
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http://elisa-ngo.org/ 

http://arxiv.org/abs/1201.3621 


