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1. Higgs in SUSY

2. Composite Higgs and h→γγ

3. Higgs or techni-dilaton?



1. Higgs and SUSY: 
A natural SUSY model via stop and higgs 

compositeness

   SUSY has two problems

1. Why no MET observed?

2. How can Higgs be 125 GeV (little 
hierarchy)



Natural SUSY 
•A possible way of accommodating SUSY with MET 
searches (other possibility is PRV, eg. MFV SUSY)

•First two generation squarks and gluino quite heavy

•LH stop, sbottom, RH stop light. σSUSY small.

•Also solves flavor issue 

•Originally suggested by Cohen, Kaplan, Nelson in ’96 
as ``more minimal SSM”

•Only particles needed to solve hierarchy problem are
right



The bounds on natural SUSY: naturalness
(Papucci, Ruderman, Weiler ’11)
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FIG. 1: Natural electroweak symmetry breaking constrains the superpartners on the left to be

light. Meanwhile, the superpartners on the right can be heavy, M � 1 TeV, without spoiling

naturalness. In this paper, we focus on determining how the LHC data constrains the masses of

the superpartners on the left.

the main points, necessary for the discussions of the following sections. In doing so, we will

try to keep the discussion as general as possible, without committing to the specific Higgs

potential of the MSSM. We do specialize the discussion to 4D theories because some aspects

of fine tuning can be modified in higher dimensional setups.

In a natural theory of EWSB the various contributions to the quadratic terms of the Higgs

potential should be comparable in size and of the order of the electroweak scale v ∼ 246GeV.

The relevant terms are actually those determining the curvature of the potential in the

direction of the Higgs vacuum expectation value. Therefore the discussion of naturalness
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while wino definitely below TeV...
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The bounds on natural SUSY: LHC
(Papucci, Ruderman, Weiler ’11)

•Simplified model: only left handed stop/sbottom, right handed stop 
decaying to higgsinos:

•Bounds from ~ 1 fb-1 data: 
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FIG. 2: Possible decay modes in the simplified model consisting only of a left-handed stop/sbottom,

or right-handed stop, decaying to a higgsino LSP. On the left, we show decays of the left-handed

stop and left-handed sbottom, whose masses are both determined by mQ3 . On the right, we show

possible decays of the right-handed stop, whose mass is determined by mu3 . At this stage, we

neglect left-right stop mixing.

We comment that near the edge of the limit, the typical acceptance of the jets plus missing

energy searches for this signal is only ∼ O(10−3). This is the right order of magnitude to set

a limit because 200 GeV stops have a production cross-section of about 10 pb, which then

leads to 10’s of events after cuts, in 1 fb
−1
.

To understand why the acceptance is ∼ O(10−3), we consider, as an example, the high

missing energy selection of the CMS jets plus missing energy search [12]. This search demands

HT > 350 GeV and /ET > 500 GeV. We find that moderately hard initial state radiation

is required for stops and sbottoms in the mass range of 200-300 GeV to pass this cut.

The low acceptance is related to the probability to produce sufficiently hard radiation. In

order to verify that the acceptance is not considerably underestimated due to the fact that

the additional jets are populated only by the parton shower in events generated by Pythia

(with the total cross-section normalized to the NLO value), we have also generated events

in Madgraph [64] with stop and sbottom pair production including also the possibility of

radiating one extra parton at the level of the matrix element. Overall we find good agreement

between the two estimates, within our typical uncertainties.

19

For comparison with the LHC limits, we have also shown in Fig. 3, the strongest limit

from the Tevatron, which comes from the D0 sbottom search with 5.2 fb
−1
. This search sets

limits on sbottom pair production, with the decay b̃ → bÑ1. For the left-handed spectrum,

this limit applies directly to the sbottom, which decays b̃L → bH̃
0
for the mass range of

interest (the decay to top and chargino is squeezed out). For the right-handed stop, the

dominant decay is t̃R → bH̃
±
, which means that the stop acts like a sbottom, from the point

of view of the Tevatron search
7
. We note that the Tevatron limit only applies for higgsinos

just above the LEP-2 limit, m
H̃
< 110 GeV, and we see that the Tevatron has been surpassed

by the LHC in this parameter space.
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FIG. 3: The LHC limits on the left-handed stop/sbottom (left) and right-handed stop (right), with

a higgsino LSP. The axes correspond to the stop pole mass and the higgsino mass. We find that the

strongest limits on this scenario come from searches for jets plus missing energy. For comparison,

we show the D0 limit with 5.2 fb
−1

(green), which only applies for m
Ñ1

<∼ 110 GeV, and has been

surpassed by the LHC limits.

7
In order to apply the Tevatron sbottom limit to right-handed stops, we have assumed that the decay

products of the charged higgsino are soft enough not to effect the selection, which applies when the mass

splitting between the charged and neutral higgsino is small

20



The bounds on natural SUSY: LHC
(Papucci, Ruderman, Weiler ’11)

•Simplified model: only left handed stop/sbottom, right handed stop 
decaying to higgsinos:

•Estimate for bounds from 10 fb-1  : 
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FIG. 17: The estimated 95% exclusion reach, with 10 fb−1, for left-handed stop/sbottom (left) and

right-handed stop (right), with higgsino LSP. We show the reach by extrapolating the cuts of the

existing searches for jets and missing energy. We find that the reach is highly sensitive to the treat-

ment of systematic errors. For the solid curves, we assume that statistical errors will reduce with

luminosity but that systematic errors will remain a constant fraction of the background estimate.

For the dashed curves, we take the idealized limit of zero statistical or systematic uncertainties

on the background estimate, taking the central value of the backgrounds reported in the current

experimental searches.

duction of third generation squarks, mostly in the b+ χ decay channel. On the other hand,

we find similar bounds on gluinos decaying through third generation squarks as those found

by the experimental collaborations, but with the striking feature that tailored searches for

gluinos decaying into heavy flavor squarks are currently not providing the most stringent

bounds.

We do not attempt to make any future projections for the mass reach for stops, bottoms,

higgsinos and the gluino for 5 and 10 fb−1 of LHC data. The main reason is that the largest

gain in reach will be likely come from new analyses designed and optimized for the parameter

space regions where the current analyses are less powerful. Designing such analyses is beyond
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The bounds on natural SUSY: LHC
(Papucci, Ruderman, Weiler ’11)

•Simplified model: only left handed stop/sbottom, right handed stop 
decaying to binos or gravitinos:

•Bounds from ~ 1 fb-1 data, no bound on RH stop. 

We now consider the LHC limit on stops and the left-handed sbottom decaying to a bino

(or gravitino) LSP. Here we will take the higgsinos to be heavier than the stops, and again

we neglect left-right stop mixing for simplicity, Xt = 0. The relevant spectra and decay

modes are shown in Fig. 4. The most important change, versus higgsino LSP, is that there is

no light chargino for the stops and sbottoms to decay to. For left-handed stops, this means

that once the decay to the bino and a top is squeezed out, mt̃L < mB̃ +mt, the left-handed

stop dominantly decays to the sbottom through a 3-body decay, t̃L → W ∗b̃L. For the right

handed stop, once the two body decay is unavailable, mt̃R < mB̃ +mt, the dominant decay

is a three-body decay through an off-shell top. And once the mass splitting between the

stop and the bino is less than the W mass, the dominant decay is 4-body with the top and

the W both off-shell. The right-handed stop decays are challenging to constrain because the

final states are similar to the tt̄ background. The same decay modes apply both for bino and

gravitino LSP, the only relevant difference is that the bino mass is a free parameter, whereas

the gravitino must be light, mG̃
<∼ keV for decays to occur within the detector.

t̃R

t
B̃ (G̃)t

t̃L

b̃LW ∗

b

B̃ (G̃)

FIG. 4: Possible decay modes of the left-handed stop/sbottom (left), or right-handed stop (right),

to a bino or gravitino LSP. Higher body final states occur when the mass splittings squeeze out the

two-body decays of the stops, mt̃L,R
< mB̃ −mt.

We present our estimate of the limit on the left-handed stop/sbottom with bino LSP in

Fig. 5. The limit with a gravitino LSP can be inferred by looking along the mB̃ ≈ 0 line of

the mass plane. We find that the strongest limits come from searches for jets plus missing
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FIG. 5: The LHC limits on left-handed stop/sbottom, with a bino LSP. The axes correspond

to the stop pole mass and the bino mass. The limit with a gravitino LSP in place of the bino

can be inferred from looking at the line with mB̃ ≈ 0 GeV. We find that searches for jets plus

missing energy set the strongest limits, which surpass the D0 limit with 5.2 fb
−1

(green). We

do not show the case with a right-handed stop with bino/gravitino LSP, where we find no limit

above mt̃
>∼ 200 GeV. We find that there may be marginal sensitivity for lighter right-handed

stops, although this requires further investigation due to the similarity of the stop signal and the

irreducible top background.

the stops to a Higgs boson, t̃2 → ht1. These decays are clearly more model dependent since

we do not have much information on the structure of the Higgs sector yet. For concreteness,

we have fixed mh = 120 GeV and take the decoupling limit in the Higgs sector, mA � mZ .

The strongest limit in this parameter space comes again from searches for jets plus missing

energy, and the outer parts of the plot are excluded. This is simple to understand: the

exclusion corresponds to the part of parameter space where the lightest stop mass falls

below the limit, mt̃1
>∼ 200 − 250 GeV. The limits are stronger to the left side of the plot,

because this is the part of parameter space where the sbottom is also light. As can be

inferred from Fig. 3, changing the values of the higgsino mass in the 100 − 200GeV range

23



The other problem with SUSY: Little hierarchy

 
•Higgs mass: fixed by quartic coupling

•SUSY: quartic coupling = 
gauge coupling (which sets W,Z mass)

•Leading result:

•But we know from LEP

•LHC:  

V (H) = λ(|H|2 − v
2

2
)2

mh ≤ MZ

mh ≥ 114GeV

mh ∼ 125GeV



•Very hard to overcome this in MSSM

•Need to assume that loop correction to quartic is 
large:

•Need large stop-top splitting

•But large loops and splittings are exactly what we are 
trying to avoid in SUSY

•Back to some fine tuning

                                       vs. 
                                                        

•Implies <1% tuning generically  



MSSM naturalness for 125 GeV Higgs
(Hall, Pinner, Ruderman, ’11)

•In MSSM very hard to get 125 GeV with light stop:

•Fine tuning:
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, mt̃1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal

top squark mixing assuming degenerate stop soft masses and yield a 126 GeV Higgs mass for

mt̃1 in the range of 500–800 GeV, while the two lower lines are for zero top squark mixing and

do not yield a 126 GeV Higgs mass for mt̃1 below 3 TeV. Here we have taken tan β = 20. The

shaded regions highlight the difference between the Suspect and FeynHiggs results, and may be

taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, λSHuHd, that is perturbative to unified scales, thereby constraining λ � 0.7

(everywhere in this paper λ refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m
2
h = M

2
Z cos

2
2β + λ2

v
2
sin

2
2β + δ2t , (2)

where here and throughout the paper we use v = 174 GeV. For λv > MZ , the tree-level

contributions to mh are maximized for tan β = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan β as in the MSSM. However, even for λ taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

δt � 32 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

126 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan β in the region

of 1 – 2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 126 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but is still of concern.
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Figure 4: Contours of mh = 126 GeV in the MSSM as a function of a common stop mass

mQ3 = mu3 = mt̃ and the stop mixing parameter Xt, for tan β = 20. The red/blue lines show

the result from Suspect/FeynHiggs. The left panel shows contours of the fine tuning of the Higgs

mass, ∆mh
, and we see that ∆mh

> 100 in order to achieve a Higgs mass of 126 GeV. The right

panel shows contours of the lightest stop mass, which is always heavier than 500 GeV when the

Higgs mass is 126 GeV.

boost the Higgs to 126 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, δm2
Hu

,

δm2
Hu

= −3y2
t

8π2

�
m2

Q3
+m2

U3
+ |At|2

�
ln

�
Λ

mt̃

�
, (5)

where Λ is the messenger scale for supersymmetry breaking. If δm2
Hu

becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine tuning. At large tan β, Xt ≈ At, and maximal mixing (|At|2 = 6m2
t̃
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine tuning, it is helpful to consider a simplified model [8] with a

single Higgs field having a potential

V = m2
H
|h|2 + λh

4
|h|4. (6)

Extremizing the potential we see that the physical Higgs mass, mh, is related to the quadratic

term of the potential by m2
h
= λhv2 = −2m2

H
. The amount of fine tuning is determined by the

7



Light stops from compositeness (and a 125 
GeV Higgs)

•Idea: some fields composite, others not

•Additional strong confining interaction producing massless 
composites - can be described via “Seiberg duality”

•Have a confining gauge group (in this case SU(4)) that 
produces massless composite mesons, gauge fields and quarks

•Identify some of these composites with the MSSM Higgs, left 
handed top/stop, sbottom, right handed stop, EW gauge fields/
gauginos: the fields needed for natural SUSY

•Important ingredient: Higgs sector will NATURALLY contain a 
singlet and NMSSM-type superpotential: needed to lift Higgs

(CC, Shirman, Terning ’11
CC, Randall, Terning ’12)



The Minimal Composite Supersymmetric SM
(MCSSM) (CC, Shirman, Terning ’11

CC, Randall, Terning ’12)
•Electric theory SU(4) with 6 flavors

•Becomes strongly coupled at ~ 10 TeV, produces massless
composites

Thus we find that at the edge of the conformal window one has a hierarchy of the soft

breaking terms, which, writing the soft scale for the elementary fields as mel ∼ mUV , takes

the form

A,mq̃,g̃ ∼ m2
el

Λ
� mel

T ∼ µfΛ×mel ≡ f 2mel � m3
el . (2.24)

As a check of the duality mapping, note that the scale matching relation between the

electric and dual magnetic theories is defined in the frame where the dual quarks are canon-

ically normalized, and the meson is mapped to QQ̄. In this frame the dual quarks carry

anomalous charge 1, and the scale matching relation is [28]

Λb
hΛ̃

b̃
h = (−1)

NΛF
M (2.25)

where ΛM can be expressed in terms of Λh and ξ by matching the anomalous charge as:

ΛM = Λhξ
3(2N−F )
3N−F (2.26)

By rescaling the terms in (2.15) to move to a frame with canonically normalized dual quarks

we find that as expected ΛM is also the parameter appearing in the dual superpotential in

this frame: Mqq̄/ΛM , as predicted in [28].

3 MCSSM: The Model for a Composite Third Gener-
ation

A concrete model (that we refer to as the Minimal Composite Supersymmetric Standard

Model or MCSSM) of supersymmetric composite Higgs and t quarks (and partially composite

W and Z) was recently proposed in [11]. The main idea is that an asymptotically free gauge

group becomes strongly interacting and the IR theory will contain composite gauge bosons,

mesons and dual quarks, some of which are to be identified with the W , Z, t, and Higgs

of the MSSM. To get a realistic theory, the composite W and Z need to be mixed with

elementary W and Z gauge bosons that couple to the elementary quarks and leptons. The

electric theory of the simplest such model is given by (corresponding to N = 4, F = 6)

SU(4) SU(6)1 SU(6)2 U(1)V U(1)R

Q 1 1
1
3

Q̄ 1 −1
1
3

(3.1)

where the SU(4) is the strong gauge group and the other groups are the global symmetries,

some of which are weakly gauged. In particular, the elementary gauge symmetries SU(3)×
SU(2)el×U(1) are embedded into these global symmetries. We will also allow small tree-level

masses for the electric quarks.
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The IR behavior of this strongly coupled theory is given by the Seiberg dual [28]

SU(2)mag SU(6)1 SU(6)2 U(1)V U(1)R

q 1 2
2
3

q̄ 1 −2
2
3

M 1 0
2
3

(3.2)

with the additional dynamical superpotential term

Wdyn = y q̄Mq . (3.3)

The SM gauge groups are embedded in the global symmetry as

SU(6)1 ⊃ SU(3)c × SU(2)el × U(1)Y

SU(6)2 ⊃ SU(3)X × SU(2)el × U(1)Y
(3.4)

where SU(3)X is a global SU(3) which will be broken by (elementary) Yukawa couplings.

The SU(2)mag × SU(2)el will eventually be broken to the diagonal subgroup which will be

identified with the SM SU(2)L. The embedding is chosen so that the dual quarks contain the

left-handed third generation quark doublet, two Higgses Hu,d, and two bifundamentals H, H̄

that will be responsible for breaking the SU(2)mag ×SU(2)el to the diagonal and generating

the partially composite W and Z. Fields are embedded into the dual quarks as

q = Q3,H, Hd

q̄ = X, H̄, Hu
(3.5)

From the q, q̄ charge assignments it follows that the meson M contains the right-handed t,

the singlets S and P , two additional Higgses Φu,d transforming under the elementary SU(2)el,

a second right handed up-type quark U and some exotics X, V,E,R,G:

M =




V U t̄

E G+ P φu

R φd S



 (3.6)

where the quantum numbers under SU(3)c × SU(2)el for the meson fields are as follows: V

represents three (3̄, 1)’s, U is a (3̄, 2), E represents three (1, 2)’s, G is a (1, 3), φd and φu are

(1, 2)’s, P and S are singlets, and R represents three singlets. The hypercharge assignments

for the electric quarks, the dual quarks, and the mesons are then

Q1 Q2 Q3 Q4 Q5 Q6

Y
1
6

1
6

1
6 0 0 −1

2

,

Q3 H, H̄ Hu Hd X V U t̄ E φu R φd G,P, S

Y
1
6 0

1
2 −1

2 −1
6 0 −1

6 −2
3

1
6 −1

2
2
3

1
2 0

.

(3.7)
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the partially composite W and Z. Fields are embedded into the dual quarks as

q = Q3,H, Hd

q̄ = X, H̄, Hu
(3.5)

From the q, q̄ charge assignments it follows that the meson M contains the right-handed t,

the singlets S and P , two additional Higgses Φu,d transforming under the elementary SU(2)el,

a second right handed up-type quark U and some exotics X, V,E,R,G:

M =




V U t̄

E G+ P φu

R φd S



 (3.6)

where the quantum numbers under SU(3)c × SU(2)el for the meson fields are as follows: V

represents three (3̄, 1)’s, U is a (3̄, 2), E represents three (1, 2)’s, G is a (1, 3), φd and φu are

(1, 2)’s, P and S are singlets, and R represents three singlets. The hypercharge assignments

for the electric quarks, the dual quarks, and the mesons are then

Q1 Q2 Q3 Q4 Q5 Q6

Y
1
6

1
6

1
6 0 0 −1

2

,

Q3 H, H̄ Hu Hd X V U t̄ E φu R φd G,P, S

Y
1
6 0

1
2 −1

2 −1
6 0 −1

6 −2
3

1
6 −1

2
2
3

1
2 0

.
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With these quantum numbers the most general gauge invariant renormalizable electric su-

perpotential is given by

Wtree = µF(Q4Q̄4 +Q5Q̄5) + µfQ6Q̄6 (3.8)

These will get mapped into tadpoles for the singlets P and S on the magnetic side. The P

tadpole will be responsible for the breaking of the SU(2)mag×SU(2)el to the diagonal, while

the S tadpole will be responsible for electroweak symmetry breaking.

The cancellation of SM gauge anomalies requires the presence of some spectator fields

in the electric theory that only have SM gauge couplings. A simple choice for this anomaly

cancelation is to include elementary fields that are conjugate to the representations of com-

posite mesons V , U , R, φu,d, G. Trilinear superpotential terms between these spectators

and electric quarks will map to mass terms in the dual description, and the extra degrees

of freedom will decouple, while the fields E,X will pair together to obtain a mass from the

VEV of the bifundamental H. The remaining standard model fields (first two generation

quarks, right handed bottom and all leptons) are assumed to be elementary fields transform-

ing under SU(3)c×SU(2)el×U(1)Y . This charge assignment will be automatically anomaly

free, and is capable of producing the usual flavor structure and CKM mixing matrix.

The relevant part of the superpotential (3.3) together with the singlet tadpoles from (3.8)

can then be written as

W ⊃ yP (HH̄− F
2
) + yS(HuHd − f

2
) + yQ3Hut̄+ yHuHφu + yHdH̄φd . (3.9)

The first term is responsible for the breaking of SU(2)el × SU(2)mag to the diagonal group,

the second term will trigger electroweak symmetry breaking, the third will give rise to the

t Yukawa coupling and the last two terms give rise to a mixing of the Higgs with a heavy

Higgs φu,d. At this point the low-energy effective theory below the scale F (and assuming

that F � f) is that of the NMSSM with a composite Higgs, Q3 and t. As explained above

the rest of the SM particles are assumed to be elementary, that is made of fields that do

not transform under the strongly coupled SU(4). They simply carry the usual SM quantum

numbers under SU(2)el × SU(3)c × U(1)Y .

At high energies there are three sets of Higgses: the composite Hu,d from the dual quarks

transforming under the composite SU(2)mag, the composite φu,d from the mesons transform-

ing under the elementary SU(2)el, and a set of elementary Higgses φ�
u,d transforming under

the elementary SU(2)el. These latter fields need to be present to remove φu,d from the spec-

trum via a trilinear superpotential term, which after duality maps into a mass term. The

elementary Higgses φ�
u,d also have ordinary Yukawa couplings with the light elementary SM

matter fields in addition to their mass with φu,d, After integrating out φu,d,φ�
u,d effective

Yukawa couplings between the remaining light composite Higgses Hu,d and the light SM

fermions are generated. For more details see [11]. The resulting theory of the Higgses in the

low energy potential has the necessary Yukawa couplings and as we will now see it also has

a viable and interesting potential.
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Where is the standard model in the MCSSM?

•Two SU(2) groups, one of them ``magnetic” composite SU(2)

•Other elementary embedded into flavor symmetry

•Composites:

•Relevant superpotential:
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With these quantum numbers the most general gauge invariant renormalizable electric su-

perpotential is given by

Wtree = µF(Q4Q̄4 +Q5Q̄5) + µfQ6Q̄6 (3.8)

These will get mapped into tadpoles for the singlets P and S on the magnetic side. The P

tadpole will be responsible for the breaking of the SU(2)mag×SU(2)el to the diagonal, while

the S tadpole will be responsible for electroweak symmetry breaking.

The cancellation of SM gauge anomalies requires the presence of some spectator fields

in the electric theory that only have SM gauge couplings. A simple choice for this anomaly

cancelation is to include elementary fields that are conjugate to the representations of com-

posite mesons V , U , R, φu,d, G. Trilinear superpotential terms between these spectators

and electric quarks will map to mass terms in the dual description, and the extra degrees

of freedom will decouple, while the fields E,X will pair together to obtain a mass from the

VEV of the bifundamental H. The remaining standard model fields (first two generation

quarks, right handed bottom and all leptons) are assumed to be elementary fields transform-

ing under SU(3)c×SU(2)el×U(1)Y . This charge assignment will be automatically anomaly

free, and is capable of producing the usual flavor structure and CKM mixing matrix.

The relevant part of the superpotential (3.3) together with the singlet tadpoles from (3.8)

can then be written as

W ⊃ yP (HH̄− F
2
) + yS(HuHd − f

2
) + yQ3Hut̄+ yHuHφu + yHdH̄φd . (3.9)

The first term is responsible for the breaking of SU(2)el × SU(2)mag to the diagonal group,

the second term will trigger electroweak symmetry breaking, the third will give rise to the

t Yukawa coupling and the last two terms give rise to a mixing of the Higgs with a heavy

Higgs φu,d. At this point the low-energy effective theory below the scale F (and assuming

that F � f) is that of the NMSSM with a composite Higgs, Q3 and t. As explained above

the rest of the SM particles are assumed to be elementary, that is made of fields that do

not transform under the strongly coupled SU(4). They simply carry the usual SM quantum

numbers under SU(2)el × SU(3)c × U(1)Y .

At high energies there are three sets of Higgses: the composite Hu,d from the dual quarks

transforming under the composite SU(2)mag, the composite φu,d from the mesons transform-

ing under the elementary SU(2)el, and a set of elementary Higgses φ�
u,d transforming under

the elementary SU(2)el. These latter fields need to be present to remove φu,d from the spec-

trum via a trilinear superpotential term, which after duality maps into a mass term. The

elementary Higgses φ�
u,d also have ordinary Yukawa couplings with the light elementary SM

matter fields in addition to their mass with φu,d, After integrating out φu,d,φ�
u,d effective

Yukawa couplings between the remaining light composite Higgses Hu,d and the light SM

fermions are generated. For more details see [11]. The resulting theory of the Higgses in the

low energy potential has the necessary Yukawa couplings and as we will now see it also has

a viable and interesting potential.
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A model with light stops and 125 GeV higgs

•The relevant part of the Higgs potential:

4 Electroweak Symmetry Breaking, Soft Breaking Pat-
terns and Mass Spectrum

The Higgs potential relevant for electroweak symmetry breaking (assuming F � f) is (in-

cluding soft breaking terms)

V = y
2|HuHd − f

2|2 + y
2|S|2(|Hu|2 + |Hd|2) +m

2
S
|S|2 +m

2
Hu

|Hu|2 +m
2
Hd
|Hd|2

+(ASHuHd + TS + h.c.) +
g
2
+ g

�2

8
(|Hu|2 − |Hd|2)2 (4.1)

where m
2
S,Hu,Hd

, A and T are soft supersymmetry breaking parameters, and the last term is

the usual MSSM D-term. This is quite different from the usual MSSM potential, and the

traditional source of fine tuning related to the need of large t̃ loop corrections for the quartic

are not produced. While the matter content of the Higgs sector is that of an NMSSM,

the actual potential is quite different from what is traditionally used in a Z3 symmetric

NMSSM. Electroweak symmetry is broken in the supersymmetric limit, and a Higgs mass

much bigger than in the MSSM is ensured since the quartic does not come from D-terms

and thus the Higgs mass is not related to the Z-mass. Such Higgs sectors are natural in the

context of composite “fat Higgs”-like models [9, 10]: the NMSSM singlet S is simply one of

the composite meson components. The NMSSM-like superpotential given in Eq. (3.9) is the

one that appears most naturally in Seiberg duals. The electroweak symmetry breaking scale

is determined by the magnitude of the S-tadpole f , which means that electroweak symmetry

breaking in general is not dependent or related to supersymmetry breaking, but that f has

to be of the order of the Higgs VEV v. For a completetly natural model, one would hope

for a deeper relation between f and v. This is similar to the usual µ-problem of the MSSM

(without a corresponding Bµ problem). The traditional way of solving this would be to

assume that the electric theory has a global Peccei-Quinn-type symmetry that forbids the

mass term for the electric quarks that eventually turn into the composite S, and that this

PQ symmetry is only broken in the supersymmetry breaking sector. Coupling the electric

quarks to the supersymmetry breaking sector can then give a PQ violating superpotential

term proportional to the supersymmetry breaking scale just like in the usual Giudice-Masiero

mechanism. We will not try to build a complete model for the supersymmtry breaking sector

in this paper.

We will use the usual parametrization of the Higgs fields:

Hu =

�
H

+
u

H
0
u

�
, Hd =

�
H

0
d

H
−
d

�
(4.2)

�H0
u
� = v√

2
sin β , �H0

d
� = v√

2
cos β . (4.3)

Since the interaction with the singlet provides a sizable quartic, it is not important to have

a large tan β, it actually can be close to one, or even less than one. Minimizing the potential

with respect to the scalar S we find the scalar VEV

�S� = −
√
2 (Av

2
sin β cos β + 2T )

2M
2
S
+ y2v2

, (4.4)

11

(CC, Randall, Terning ’12,
CC, Shirman, Terning ’11)



A model with light stops and 125 GeV higgs

•The relevant part of the Higgs potential:

• usual SUSY quartic

4 Electroweak Symmetry Breaking, Soft Breaking Pat-
terns and Mass Spectrum
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A model with light stops and 125 GeV higgs

•The relevant part of the Higgs potential:

• additional NMSSM-like  quartic due to confining dynamics - 
does not have to be small, can be > 1. tan β does NOT have to 
be large, in fact can be < 1

•S singlet a composite, other parameters soft breaking terms 
that can be estimated from strong dynamics in SUSY

•f will drive EWSB (different that MSSM, get EWSB w/o SUSY 
breaking). Good: higgs mass not related to Z mass, bad: why 
f~v?

4 Electroweak Symmetry Breaking, Soft Breaking Pat-
terns and Mass Spectrum

The Higgs potential relevant for electroweak symmetry breaking (assuming F � f) is (in-

cluding soft breaking terms)
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A model with light stops and 125 GeV higgs

•The EWSB vacuum:

                                    will generate effective µ=y <S>

•At minimum

•Fine tuning about             better than in MSSM, and stop can 
be light...

•Bound on gluino mass: don’t want to lift stop too much

                                      will keep gluino below 1.5 TeV to have 
400 GeV stop natural 

4 Electroweak Symmetry Breaking, Soft Breaking Pat-
terns and Mass Spectrum

The Higgs potential relevant for electroweak symmetry breaking (assuming F � f) is (in-

cluding soft breaking terms)
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the usual MSSM D-term. This is quite different from the usual MSSM potential, and the

traditional source of fine tuning related to the need of large t̃ loop corrections for the quartic

are not produced. While the matter content of the Higgs sector is that of an NMSSM,

the actual potential is quite different from what is traditionally used in a Z3 symmetric

NMSSM. Electroweak symmetry is broken in the supersymmetric limit, and a Higgs mass

much bigger than in the MSSM is ensured since the quartic does not come from D-terms

and thus the Higgs mass is not related to the Z-mass. Such Higgs sectors are natural in the

context of composite “fat Higgs”-like models [9, 10]: the NMSSM singlet S is simply one of

the composite meson components. The NMSSM-like superpotential given in Eq. (3.9) is the

one that appears most naturally in Seiberg duals. The electroweak symmetry breaking scale

is determined by the magnitude of the S-tadpole f , which means that electroweak symmetry

breaking in general is not dependent or related to supersymmetry breaking, but that f has

to be of the order of the Higgs VEV v. For a completetly natural model, one would hope

for a deeper relation between f and v. This is similar to the usual µ-problem of the MSSM

(without a corresponding Bµ problem). The traditional way of solving this would be to

assume that the electric theory has a global Peccei-Quinn-type symmetry that forbids the

mass term for the electric quarks that eventually turn into the composite S, and that this

PQ symmetry is only broken in the supersymmetry breaking sector. Coupling the electric

quarks to the supersymmetry breaking sector can then give a PQ violating superpotential

term proportional to the supersymmetry breaking scale just like in the usual Giudice-Masiero

mechanism. We will not try to build a complete model for the supersymmtry breaking sector

in this paper.

We will use the usual parametrization of the Higgs fields:
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Since the interaction with the singlet provides a sizable quartic, it is not important to have
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A combination of the other two equations yield an expression that is analogous to the usual
fine-tuning condition for the Higgs VEV:

y2v2

2
=

2(y2f 2 − AS)

sin 2β
− 2y2S2 −m2

Hu
−m2

Hd
(4.5)

Thus the fine tuning can now be characterized by

y2v2

2m2
Hu

(4.6)

In most supersymmetric models, the t̃’s have to be sufficiently heavy to generate a large
enough Higgs quartic (or equivalently, a large enough physical Higgs mass). On the other
hand, heavy t̃’s also give a large contribution to m2

Hu
leading to large tuning. In our models,

one has a large tree-level quartic from compositeness, and the t̃’s are light, thus (4.6) can
be of O(1) with composite t̃ masses in the 200-500 GeV range. Even so, since the gluino is
elementary and thus in the few TeV range the the two-loop corrections to the Higgs mass
via gluino-t̃ loops can potentially be too large. The leading 2-loop correction to m2

Hu
due to

the gluino loop is

∆m2
Hu

∼ −2y2
t
α2
s

π3
|mg̃|

2 log2
�

Λ

TeV

�
(4.7)

Note that due to compositeness, the cutoff scale of the logarithm is small here. Even for low
tan β, one gets only about ten percent tuning for a gluino as heavy as 3 TeV.

We conclude that in principle, a gluino heavier than those that are usually considered
natural would be allowed. However, a heavy gluino mass would also contribute to the t̃
masses, and in our models we assume light top squark masses. The leading log correction to
the t̃ mass parameters is of the order

∆mt̃ ∼
32

3

αs

4π
|M3|

2 log

�
Λ

TeV

�
(4.8)

Even with this additional consideration on naturalness, since the logarithm is quite small
(corresponding to the running between the duality scale and the TeV scale, log Λ

TeV ∼ 2),
one can naturally maintain a hierarchy between the gluino and the t̃ mass. However this
hierarchy cannot be very large if we want to keep the top squark light. A gluino of about
1.5 TeV would be natural with a 400 GeV t̃ without much tuning. If one were to allow ten
percent tuning the gluino mass could be raised to about 3 TeV. We will however not do
that, and restrict the gluino mass to be below 1.5 TeV in order to protect the squark mass
hierarchies obtained from the strong dynamics. Note, that the experimental lower bound on
the gluino is around 700 GeV even if it only decays via third generation squarks [29].

We now discuss the pattern of soft breaking terms and the magnitudes of the relevant
parameters of the model. While we do not fully specify the mechanism of supersymmetry
breaking mediation to the elementary (“electric”) fields here, we will usually assume some
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The SUSY breaking hierarchy:
(CC, Randall, Terning ’12)

•If strong dynamics close to conformal (depends on details of 
the SU(4) theory, in this case means F≥6)

•Assuming that soft breaking generated above confinement 
scale Λ

•Elementary fields (first two generation squarks, sleptons, 
gluino get mass 

•Composites get suppressed soft breaking masses

•For Λ~5-10 TeV composites in few 100 GeV range

form of low-scale mediation mechanism, in order to have the gravitino be the LSP. The

prime example of such models is gauge mediation. However, even if we assume gauge medi-

ation applies, this is a non-standard application, since we are eventually ending up with the

NMSSM. Naively one would think that gauge mediation can not be applied to an NMSSM-

type theory, since the singlet will not obtain SUSY breaking terms. However, in this case

gauge mediation is assumed to happen above the compositeness (“duality”) scale. Since the

singlet is a composite (it is a component of the meson) a soft breaking term (suppressed as

with all composites) will be induced for it. The mass for the fermionic partner of the singlet

(the singlino) is model dependent. There can be a singlino mass from non-renormalizable

terms for the elementary fields (Q̄6Q6)
2/ΛUV giving a singlino mass of order mSf

∼ Λ2/ΛUV .

There will also be a singlino mass generated by the strong dynamics of order
f4

Λ4mel which is

typically quite small. We will not be making a definite assumption on the size of the singlino

mass, but explore spectra both with small and sizeable values for it.

Note that the usual Bµ problem is simply not present, since the potential contains only

trilinear and tadpole terms, both of which are induced as described in Sec. 2. While the

µ-problem is solved as usual in NMSSM-type models, an issue similar to the µ-problem is

why the parameter f is close to the electroweak scale, which as we discussed before is likely

to be addressed with a more complete model of SUSY breaking.

The message from the general discussion of Section 2 is that soft breaking terms for

the composites are suppressed compared to those of the elementary fields, while the scalar

tadpole T is unsuppressed. We choose parameters consistent with the hierarchies explained

in the previous explained in the previous section of order

mel ∼ M3 ∼ few · TeV

Λ ∼ 5− 10 TeV

mcomp ∼
m2

el

Λ
∼ M1 ∼ M2 ∼ A ∼ few · 100 GeV

f ∼ 100 GeV

T ∼ f 2mel ∼ few · 10
7
GeV

3

F ∼ few · TeV

µeff = y�S� ∼ A (4.9)

tan β ∼ O(1) (4.10)

Here mel includes the soft breaking scalar masses of the first two generation squarks, the

right handed sbottom, b̃ and all sleptons, while mcomp includes mQ33 and mU33 . The soft

terms include the dynamical non-calculable contributions of O(m2
el/Λ) and the additional

radiative corrections ∝ log
Λ

TeV . The latter can be comparable to the dynamical terms as we

discussed for the gluino loops. The effective Bµ term is A�S� ∼ µ2
eff . However, as stated

previously, in this model electroweak symmetry is broken in the supersymmetric limit, so

the magnitude of Bµ is not very crucial. Note, that flavor constraints for such models with

heavy first and second generation squarks and sleptons are largely satisfied if the scale of the

heavy squark masses is around 5 TeV [30], and if the heavy squarks are close to degenerate,

which would be the case if they get their masses from gauge mediation.
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The input parameters

•Other parameters determined from minimizing Higgs potl

•Augmented NMSSMtools to implement different Higgs 
potential, calculate spectra, decay rates. Looked at four 
characteristic examples with very light stops (clearly can make 
them somewhat heavier if needed)

parameter spectrum 1 spectrum 2 spectrum 3 spectrum 4

tan β 0.85 1.3 1.0 0.97
A 300 GeV 540 GeV 350 GeV 400 GeV

T 4× 10
7
GeV

3
1.4× 10

7
GeV

3
3.35× 10

7
GeV

3
6× 10

6
GeV

3

mQ33 500 GeV 500 GeV 350 GeV 400 GeV

mU33 250 GeV 350 GeV 350 GeV 400 GeV

M1 600 GeV 700 GeV 85 GeV 600 GeV

M2 800 GeV 800 GeV 282 GeV 1200 GeV

mS 400 GeV 350 GeV 350 GeV 100 GeV

MSf 0 GeV −350 GeV 0 GeV 0 GeV

f 100 GeV 100 GeV 293 GeV 100 GeV

Table 1: Input parameters for the four sample spectra. In spectrum 1, the t̃ is the NLSP and

very degenerate with the top, generating a stealth stop spectrum. In spectrum 2, the t̃ is the
NLSP but is a bit heavier. Spectrum 3 has a neutralino NLSP and is generated through a

gauge mediated spectrum. Spectrum 4 has a neutralino (N)LSP, and the compositeness scale

is assumed high enough that radiative corrections to soft composite superpartners dominate.

NLSP’s, while the second two have neutralino NLSP/LSP’s. The singlino mass is set to zero

in all but the second spectrum, where it is used to raise the lightest neutralino mass above

the t̃ mass. The first spectrum has the lightest t̃ almost degenerate with the t, and is thus

more “stealthy”, while the second one has heavier t̃’s with it still being the NLSP. The third

spectrum implements minimal gauge mediation to the electric degrees of freedom: the ratio

of gaugino masses here is given by the coupling constant squares (with the gluino at 1 TeV),

and the other soft breaking masses for the composites taken equal. The fourth spectrum

was chosen such that the soft-breaking Higgs masses are rather small so this scenario could

correspond to a high duality scale with radiatively generated t̃ and b̃ masses. While we are

assuming some form of low-scale supersymmetry breaking in all but one of the spectra, only

the third one corresponds to minimal gauge mediation. In the minimal case the gaugino

mass ratios are determined by the SM gauge couplings, and the upper bound on the gluino

mass implies a fairly light bino below 100 GeV and thus a neutralino LSP (unless the a large

contribution to the singlino mass is present). The cases with heavier gaugino masses (and t̃
NLSP’s) can be thought of as cases corresponding to a general gauge mediated spectrum [31]

to the electric degrees of freedom.

We have chosen the parameters of all four spectra such that the lightest Higgs mass is

around 125 GeV. This is not a necessity dictated by the model, and one can easily obtain

spectra with heavier Higgses. We also made sure that for these points we are sufficiently

close to the decoupling limit, such that Higgs production and decay rates are not too far

from the corresponding SM values. Note that choosing the input parameters given above

does not involve any extensive tuning: no automated scans had to be performed for finding

these points.

In order to calculate the spectrum and widths we have modified the NMSSMTools [34,35]
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Four different sample spectra
(CC, Randall, Terning ’12)

parameter spectrum 1 spectrum 2 spectrum 3 spectrum 4
µeff −416 GeV −639 GeV −422 GeV −342 GeV
m2

Hu
−(176 GeV)2 −(244 GeV)2 (350 GeV)2 (40.3 GeV)2

m2
Hd

−(218 GeV)2 (207 GeV)2 (350 GeV)2 −(46.6 GeV)2

Table 2: Output parameters for the four benchmark spectra.

Figure 1: Light superpartners and Higgs particles for benchmark spectra 1 and 2 with a t̃
NLSP.

package, which deals with the Z3 symmetric NMSSM. The modified package (MCSSMTools)
[36] handles the minimal composite supersymmetric standard model considered here, where a
linear superpotential term, tadpole soft breaking term, and a singlino mass are also allowed.

The mass spectra are presented graphically in Fig. 1 (benchmark spectra 1 and 2 with
t̃ NLSP’s) and Fig. 2 (benchmark spectra 3 and 4 with neutralino NLSP/LSP’s). The
numerical values for the masses for spectra 1 and 2 are presented in Table 3, while the
leading decay modes are in Table 4. The physical masses for spectra 3 and 4 are in Table 5,
with decay modes in Table 6. The spectrum and decay chains can be interactively visualized
online at http://bit.ly/mcspect. Table 7 contains the couplings of the lightest Higgs
relative to their SM values. One can see that we are close to the decoupling limit in each
case: gluon couplings are within 65-83% of the SM values, while the photon coupling varies
between 85-102% of the SM size for the same Higgs mass.
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1. Stealth stop

H1 125 GeV b̃1 499 GeV

t̃1 188 GeV A2 509 GeV

N1 216 GeV H3 530 GeV

H
±

307 GeV t̃2 580 GeV

H2 326 GeV N3 602 GeV

A1 368 GeV N4 635 GeV

C1 406 GeV N5 805 GeV

N2 426 GeV C2 876 GeV

H1 125 GeV C1 628 GeV

t̃1 210 GeV N2 651 GeV

N1 429 GeV H3 667 GeV

b̃1 501 GeV N3 700 GeV

A1 572 GeV A2 720 GeV

t̃2 621 GeV N4 724 GeV

H
±

626 GeV N5 806 GeV

H2 627 GeV C2 881 GeV

Table 3: Light superpartners and Higgs particles for benchmark spectra 1 and 2 with a t̃

NLSP. All other superpartners are above 1 TeV.

t̃1 → t+ LSP 100%

C1 → t̃1 + b
†

84%

C1 → N1 +W
±

16%

b̃1 → t̃1 +W
−

97%

b̃1 → t̃1 +H
−

3%

t̃2 → t̃1 + Z 51%

t̃2 → t+N1 27%

t̃2 → b+ C
+
1 11%

t̃2 → t̃1 +H1 10%

t̃1 → t+ LSP 100%

N1 → t+ t̃
∗

50%

N1 → t̄+ t̃ 50%

b̃1 → t̃1 +W
−

100%

t̃2 → t̃1 + Z 78%

t̃2 → b̃1 +W
+

14%

t̃2 → t̃1 +H1 8%

Table 4: Branching fractions for benchmark spectra 1 and 2 with a t̃ NLSP.
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•Stop almost degenerate with top
•First neutralino close by
•Heavier stop, sbottom ~ 500 GeV
•Other fields over 1 TeV



Four different sample spectra
(CC, Randall, Terning ’12)
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•Stop decays to top + gravitino - not much 
missing ET. σ~15 pb, 10% of ttbar
•Need precise σtop

•Next stop, sbottom ~10 fb
•Sbottom: ttWW
•Stop2: ttZZ, ttbbW*W*

•Could have displaced top vertex



Four different sample spectra
(CC, Randall, Terning ’12)
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•Stop somewhat heavier, still close to t
•First neutralino heavier (should be 429 
GeV)
•Heavier stop, sbottom ~ 500 GeV



Four different sample spectra
(CC, Randall, Terning ’12)
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•Stop decays to top + gravitino - not much 
missing ET. σ~8 pb, 5% of ttbar
•Need even more precise σtop

•N1→t+stop, tttt final states, still small 
missing E.
•Sbottom: ttWW
•Stop2: ttZZ, ttWWWW



Four different sample spectra
(CC, Randall, Terning ’12)

3. Minimal gauge mediation

Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.
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Table 6: Branching fractions for benchmark spectra 3 and 4.

22

N1 88 GeV C2 415 GeV

H1 128 GeV N4 434 GeV

t̃1 191 GeV H2 473 GeV

N2 192 GeV t̃2 517 GeV

N3 291 GeV N5 613 GeV

C1 327 GeV H
±

650 GeV

b̃1 350 GeV H3 657 GeV

A1 412 GeV A2 702 GeV

H1 126 GeV N2 348 GeV

A1 190 GeV H3 353 GeV

N1 217 GeV b̃1 400 GeV

t̃1 284 GeV A2 460 GeV

H2 339 GeV t̃2 546 GeV

H
±

341 GeV N3 559 GeV

C1 341 GeV N4 602 GeV

Table 5: Benchmark spectra 3 and 4.

two generations squarks, the rates are strongly reduced from those of the constrained MSSM.

These spectra fall in the class of models considered in [5].

The third set of input parameters in particular represent a minimal gauge mediated

spectrum to the electric degrees of freedom. All the soft scalar masses are set equal to

350 GeV. Thus fixing m
2
Hu

= m
2
Hd

= (350 GeV)
2
means that f is no longer really an input

parameter but is an output of fixing the right EWSB vacuum. Since we are considering gauge

mediation, the expectation is that the LSP is again the gravitino, and the NLSP N1 decays

to photon plus gravitino. The lightest t̃ decays to t
∗
N1, while the heavier t̃ has again many

possible decay channels including t̃1Z, b̃W,N1,2,3t, C1,2b, while the sbottom again decays to

t̃W . Depending on the N1 lifetime, the final states will again either be j+MET, jt+MET,

and j +W/Z+MET, or the same final states with additional photons. This spectrum will

also produce some longer SUSY cascades involving the same final states.

5.4 Spectrum 4: high duality scale

The fourth spectrum was chosen such that it can correspond to a higher duality scale, where

the squark masses are mainly radiatively induced from the elementary gluino (and not coming

from power suppressed terms), while the other composite soft masses are small. In this case

Higgs naturalness is especially good, since the Higgs soft breaking terms needed are around

(50 GeV)
2
. Third generation squarks are in the 300-500 GeV range. The lightest t̃ decays

via t̃1 → N1c, while the second t̃ has many possible decay modes to final states t̃1Z,C
+
1 b, b̃W

and N1,2t. The sbottom decay is b̃1 → t̃1W . The characteristic final states will be j+MET,

jt+MET, or jW/Z+MET events. This yields fairly traditional SUSY signals at reduced

rate and no leptons (except from W and Z’s).

6 Conclusions

We have seen that by combining supersymmetry, which makes the theory calculable but also

the Higgs too light and/or fine-tuned, with compositeness, which requires strong coupling

and allows for a heavier Higgs with large dynamical Yukawa couplings to other composites,
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•Neutralino LSP or NLSP, missing 
energy, but reduced σ
•Stop still pretty light close to top 



Four different sample spectra
(CC, Randall, Terning ’12)

3. Minimal gauge mediation

Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.
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•If gauge mediation gravitino LSP
•N1→γ+gravitino, missing ET
•stop→t*+N1

•stop2→stop1 Z,sbottom W,N t, C b, 
•j+MET, j+t+MET, j+W/Z+MET or 
photons, also longer cascades

Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.
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Four different sample spectra
(CC, Randall, Terning ’12)

4. High duality scale

•Neutralino LSP or NLSP

•N1 over 200 GeV, stop around 300

Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.

t̃1 → N+
1 + b+W+

100%

b̃1 → N3 + b 80%

b̃1 → t̃1 +W−
95%

b̃1 → N3 + b 4%

b̃1 → N1 + b 1%

t̃2 → t̃1 + Z 42%

t̃2 → b̃1 +W+
31%

t̃2 → N2 + t 10%

t̃2 → C+
2 + b 8%

t̃2 → N1 + t 4%

t̃2 → C+
1 + b 3%

t̃2 → N3 + t 2%

t̃1 → N1 + c 99%

t̃1 → N1 + u 1%

b̃1 → t̃1 +W−
100%

t̃2 → t̃1 + Z 28%

t̃2 → C+
1 + b 24%

t̃2 → b̃1 +W+
20%

t̃2 → N2 + t 15%

t̃2 → N2 + t 14%

Table 6: Branching fractions for benchmark spectra 3 and 4.

22

N1 88 GeV C2 415 GeV

H1 128 GeV N4 434 GeV

t̃1 191 GeV H2 473 GeV

N2 192 GeV t̃2 517 GeV

N3 291 GeV N5 613 GeV

C1 327 GeV H
±

650 GeV

b̃1 350 GeV H3 657 GeV

A1 412 GeV A2 702 GeV

H1 126 GeV N2 348 GeV

A1 190 GeV H3 353 GeV

N1 217 GeV b̃1 400 GeV

t̃1 284 GeV A2 460 GeV

H2 339 GeV t̃2 546 GeV

H
±

341 GeV N3 559 GeV

C1 341 GeV N4 602 GeV

Table 5: Benchmark spectra 3 and 4.

two generations squarks, the rates are strongly reduced from those of the constrained MSSM.

These spectra fall in the class of models considered in [5].

The third set of input parameters in particular represent a minimal gauge mediated

spectrum to the electric degrees of freedom. All the soft scalar masses are set equal to

350 GeV. Thus fixing m
2
Hu

= m
2
Hd

= (350 GeV)
2
means that f is no longer really an input

parameter but is an output of fixing the right EWSB vacuum. Since we are considering gauge

mediation, the expectation is that the LSP is again the gravitino, and the NLSP N1 decays

to photon plus gravitino. The lightest t̃ decays to t
∗
N1, while the heavier t̃ has again many

possible decay channels including t̃1Z, b̃W,N1,2,3t, C1,2b, while the sbottom again decays to

t̃W . Depending on the N1 lifetime, the final states will again either be j+MET, jt+MET,

and j +W/Z+MET, or the same final states with additional photons. This spectrum will

also produce some longer SUSY cascades involving the same final states.

5.4 Spectrum 4: high duality scale

The fourth spectrum was chosen such that it can correspond to a higher duality scale, where

the squark masses are mainly radiatively induced from the elementary gluino (and not coming

from power suppressed terms), while the other composite soft masses are small. In this case

Higgs naturalness is especially good, since the Higgs soft breaking terms needed are around

(50 GeV)
2
. Third generation squarks are in the 300-500 GeV range. The lightest t̃ decays

via t̃1 → N1c, while the second t̃ has many possible decay modes to final states t̃1Z,C
+
1 b, b̃W

and N1,2t. The sbottom decay is b̃1 → t̃1W . The characteristic final states will be j+MET,

jt+MET, or jW/Z+MET events. This yields fairly traditional SUSY signals at reduced

rate and no leptons (except from W and Z’s).

6 Conclusions

We have seen that by combining supersymmetry, which makes the theory calculable but also

the Higgs too light and/or fine-tuned, with compositeness, which requires strong coupling

and allows for a heavier Higgs with large dynamical Yukawa couplings to other composites,

21



Four different sample spectra
(CC, Randall, Terning ’12)

4. High duality scale

•stop→N1+c
•stop2→stop1+Z, C+b, sbottom+W,N+t
•sbottom→stop1+W
•Final states: j+MET, j+t+MET, j+W/Z
+MET
•Traditional SUSY at reduced rates

Figure 2: Light superpartners and Higgs particles for benchmark spectra 3 and 4.
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Higgs branchings

SM fields spectrum 1 spectrum 2 spectrum 3 spectrum 4
γγ 1.02 1.02 0.95 0.85

gluons 0.65 0.83 0.82 0.73
WW,ZZ 0.89 0.96 0.89 0.74

uū 0.72 1.0 0.89 0.72
dd̄ 1.01 0.91 0.89 0.77

Table 7: Ratio of Higgs couplings to SM Higgs couplings for the same mass for the four
benchmark spectra to various SM fields.

we can address three hierarchies: the hierarchy in Yukawa couplings, the little hierarchy
problem, and the apparent hierarchy in squark soft masses. The strong dynamics determines
which particles have significant coupling to the composite Higgs and can force the composite
superpartners that are thus required for naturalness to be much lighter than the elementary
superpartners.

In the model presented here Seiberg duality provides the crucial ingredient for resolving
these hierarchies. The lessons could apply more generally but with Seiberg duality, we can
explicitly determine the hierarchies in the spectrum of composite superpartners. The models
we presented produce a composite Higgs, t and LH b along with partially composite W and
Z. The low energy dynamics is that of the NMSSM with a composite singlet, where the
singlet couplings equal the t Yukawa coupling. This ensures that the Higgs can be sufficiently
heavy. The flavor problem is addressed via the large dynamical top Yukawa, and the little
hierarchy via the NMSSM-type singlet coupling that determines the effective µ-parameter
and is related to the top Yukawa. The strong dynamics at the edge or just inside the
conformal window will strongly suppress the soft breaking terms for the composites. This
gives the necessary hierarchy among the squark masses, that will strongly reduce the SUSY
production rates at the LHC and allow for a natural SUSY EWSB sector.

We have presented four distinct mass spectra corresponding to explicit implementations
of this model. Two of them have the t̃ as the NLSP (with gravitino LSP’s), while the other
two have the N1 as the (N)LSP. One of the spectra with a t̃ NLSP correspond to an explicit
implementation of a stealthy stop, where most of the SUSY events would not contain much
missing energy.

Although conventional supersymmetric models are being challenged by experiments and
naturalness at this point, this model raises the hope that models with more subtle composite
dynamics could in fact be the correct theory of nature.
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Not so different from SM: plausible that LHC Higgs results 
can be reproduced 



2. Composite Higgs and ρ±,0:
enhancement of h→γγ?

Strong dynamics

•Produces light higgs

•Additional resonances at cutoff Λ

•Higgs couplings could be different from
SM values

(Bellazzini, C.C., Hubisz,
Serra, Terning ’12)



•If higgs couplings  very different from SM: unitarity 
may break down BEFORE cutoff scale

•Need additional light states to maintain unitarity to Λ

•Assume additional spin-1 triplet ρ±,0 

•Simplified model: assume custodial symmetry

•Pion Lagrangian for longi modes of W,Z from CCWZ

•Assume ρ±,0 triplet of SU(2)C



The moose for the simplest model:

                            =  

                                                      PLR    parity

•Assume axial vectors integrated out

•Just use lowest states
                    

SO(4)
∪

SU(2)LxU(1)Y
SU(2)ρ

Figure 1: The moose diagram for the minimal model considered here.

SU(2)ρSU(2)L SU(2)R
 

Figure 2: A different depiction of the same moose diagram, which has the left-right parity
explicit.

SO(4)SO(4)
SO(4)

∪
SU(2)xU(1)Y

SO(4)
↓

SU(2)ρ

Figure 3: The moose corresponding to the deconstructed extra dimensional theory.

two SU(2) factors of the SO(4) global symmetry. Here SU(2)L is gauged, while only a U(1)
subgroup of SU(2)R is gauged. This notation makes the PLR parity symmetry explicit: it
simply corresponds to the exchange of SU(2)L ↔ SU(2)R.

These moose diagrams can be thought of as a two-site deconstruction [14] of an extra
dimension with an SO(4) gauge symmetry in the bulk [8]. The moose diagram of a generic
deconstructed theory is depicted in Fig. 3, where the last site on the right in the extra
dimensional picture would correspond to the SO(4) → SU(2)C breaking, making the axial
combinations of the SO(4) gauge bosons heavy. Integrating out the axial gauge bosons
and limiting ourselves to two sites we obtain the model considered here. Models with a
global symmetry larger than SO(4) will also be described in our formalism, in which case
the larger symmetry will impose additional relations among the free parameters considered
here. Here we focus on the minimal model, while adding more states/structure will not
significantly change our conclusions.
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•The Higgs Lagrangian:  

• a parametrizes deviation of GB coupling - unitarity

• cf parametrizes fermion coupling - unitarity in 
WW→ff channel

•The vector Lagrangian:

2.1 Parametrization of the Higgs interactions

The interactions of the Higgs relevant for its production and decay are parametrized by

the following effective Lagrangian

L(h)
eff = a

�
2m2

W

v
W+

µ W−
µ +

m2
Z

v
Z2

µ

�
h+ cf

�mf

v
f̄f

�
h+ cγ

α

πv
F 2
µνh+ cg

αs

12πv
G2

µνh (2.1)

where the a and c’s parametrize possible deviations from the SM Higgs couplings [15–18] for

canonically normalized kinetic terms and masses. In order to avoid Higgs-mediated flavor

changing neutral currents we assume, for simplicity, that the matrix cf in flavor space is

diagonal in the mass basis. The pre-factors have been chosen such that the Lagrangian

coincides with that of the SM when all dimensionless parameters are one
2
:

aSM = cf,SM = 1 cg,SM � cγ,SM � 1 . (2.2)

Note that V = W,Z have the same a coupling coefficient to the Higgs due to custodial

symmetry. For custodial breaking parametrizations see [19]. The parametrization in (2.1)

is quite general and it captures several models where the Higgs is much lighter than any

other state with the same quantum numbers after EWSB. For instance, in the MSSM (or

any other two Higgs doublet model with the same structure) one has a = sin(β − α),
ct = cosα/ sin β, cb = − sinα/ cos β. Models with just another heavy singlet scalar give a

universal rescaling a = ct = cb. Universal rescalings also arise in models where the Higgs is

the dilaton of a spontaneously broken CFT [20], or for a radion in an extra dimension [21].

In the scenario where the Higgs is a pNGB the departure of a and cf from one scales as

v2/f 2
, with f the Higgs decay constant [22].

2.2 Effective Lagrangian for the resonance ρ

Next we consider the interaction terms relevant for the phenomenology of the additional

vector resonances ρ±,0
. These resonances, together with the isosinglet scalar h, can be

considered the lowest states in a infinite tower of resonances exchanged in VV scattering.

Thus, for this approach to make sense we need the resonance mass mρ to be well below

the cutoff so that higher dimensional operators induced by extra states (presumably living

around the cutoff scale) can be neglected. Under this assumption it is then very convenient
3

to represent the resonance as a Lorentz vector ρaµ that transforms as a gauge field under

the unbroken SU(2)c ⊂ SU(2)L × SU(2)R [24–26]. This will ensure that the gap between

mρ and Λ is naturally stable and the resulting effective field theory is useful because gauge

invariance eliminates the dangerous operators suppressed only by inverse powers of mρ

rather than the cutoff of the theory. Such operators would be generated by the longitudinal

2The effective Lagrangian (2.1) already includes one-loop contributions to cγ,g from SM states.
3Although it is not necessary and in some contexts other formalisms are more suitable, see e.g. [23] and

reference therein.
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components if the vector were coupled to non-conserved currents. Taking ρµ to be a gauge

field renders these longitudinal components harmless because the resonance couples to the

conserved current J c
µ associated to the custodial symmetry SU(2)C

LI ⊃ gρρ
a
µJ

c a
µ = gρππ�

abcρaµ∂µπ
bπc

+ . . . (2.3)

The ellipses in (2.3) contain contributions to J c
µ from matter fields as well as from gauge

bosons once the SU(2)L ×U(1)Y inside SU(2)L ×SU(2)R is gauged. These terms give rise

to ρ − V mixing and therefore, after diagonalization of the mass matrix, generate model-

independent contribution to the couplings between ρ and the SM fields. Additional model-

dependent couplings to SM fermions can arise if some chiralities are (partially) composite so

that they can couple directly to the ρ via the matter contributions to the current J c
µ. In the

physical mass basis
4
the lowest order Lagrangian that is relevant for LHC phenomenology

can then be parametrized by

L(ρ)
eff = cρ

m2
ρ

v

�
ρ0 2µ + 2ρ+µ ρ

−
µ

�
h+ cρZ

�
m2

Z

v
Zµρ

0
µ

�
h+ cρW

�
m2

W

v
W+

µ ρ−µ + h.c.

�
h

+ gρ0WW

�
∂µW

+
ν W−

µ − ∂µW
−
ν W+

µ

�
ρ0ν + gρWZ

��
∂µW

−
ν Zµ − ∂µZνW

−
µ

�
ρ+ν

+ h.c.
�

+ . . .+ gρ0f
�
f̄γµT

3
f f

�
ρ0µ + gρ±f

�
f̄γµT

∓f
�
ρ±µ (2.4)

where the ellipses in Eq. (2.4) stands for cyclic permutations of the fields.

2.2.1 ρ couplings to SM gauge bosons and Higgs

The first term in (2.4) is the hρρ coupling which is allowed as long as a mass term for ρ
is not forbidden. Therefore, it is a free parameter which is only constrained by unitarity

arguments or NDA. As explained later, the coupling cρ will generate a one-loop contribution

to the h → γγ rate that might be sizable.

The couplings involving the ρ and the SM gauge bosons hV ρ and ρV V are generated

from ρ − V mixing after diagonalization of the spin 1 mass matrix. The mixing angle

between ρ and V is of order gSM/(2gρ), where gSM = g, g� are the EW gauge couplings and

gρ is the interaction strength of the vector ρ

L(ρ3)
= gρ

�
�abc∂µρ

a
νρ

b
µρ

c
ν

�
. (2.5)

This latter coupling is assumed to be parametrically larger than gSM, as generically realized

in composite models. After EWSB the resulting ρV V vertices are obtained from (2.5) and

the SM trilinear V V V vertex. Therefore they have the same Lorentz structure and are of

the order g2SM/(2gρ)

gρ0W+W− ≈ −g

�
g

4gρ

�
gρ±W±Z ≈ −g

��
g2 + g�2

4gρ

�
(2.6)

4We use ρa=1,2,3 for the gauge basis and ρ0,± for the physical basis.

5

components if the vector were coupled to non-conserved currents. Taking ρµ to be a gauge

field renders these longitudinal components harmless because the resonance couples to the

conserved current J c
µ associated to the custodial symmetry SU(2)C

LI ⊃ gρρ
a
µJ

c a
µ = gρππ�

abcρaµ∂µπ
bπc

+ . . . (2.3)

The ellipses in (2.3) contain contributions to J c
µ from matter fields as well as from gauge

bosons once the SU(2)L ×U(1)Y inside SU(2)L ×SU(2)R is gauged. These terms give rise

to ρ − V mixing and therefore, after diagonalization of the mass matrix, generate model-

independent contribution to the couplings between ρ and the SM fields. Additional model-

dependent couplings to SM fermions can arise if some chiralities are (partially) composite so

that they can couple directly to the ρ via the matter contributions to the current J c
µ. In the

physical mass basis
4
the lowest order Lagrangian that is relevant for LHC phenomenology

can then be parametrized by

L(ρ)
eff = cρ

m2
ρ

v

�
ρ0 2µ + 2ρ+µ ρ

−
µ

�
h+ cρZ

�
m2

Z

v
Zµρ

0
µ

�
h+ cρW

�
m2

W

v
W+

µ ρ−µ + h.c.

�
h

+ gρ0WW

�
∂µW

+
ν W−

µ − ∂µW
−
ν W+

µ

�
ρ0ν + gρWZ

��
∂µW

−
ν Zµ − ∂µZνW

−
µ

�
ρ+ν

+ h.c.
�

+ . . .+ gρ0f
�
f̄γµT

3
f f

�
ρ0µ + gρ±f

�
f̄γµT

∓f
�
ρ±µ (2.4)

where the ellipses in Eq. (2.4) stands for cyclic permutations of the fields.

2.2.1 ρ couplings to SM gauge bosons and Higgs

The first term in (2.4) is the hρρ coupling which is allowed as long as a mass term for ρ
is not forbidden. Therefore, it is a free parameter which is only constrained by unitarity

arguments or NDA. As explained later, the coupling cρ will generate a one-loop contribution

to the h → γγ rate that might be sizable.

The couplings involving the ρ and the SM gauge bosons hV ρ and ρV V are generated

from ρ − V mixing after diagonalization of the spin 1 mass matrix. The mixing angle

between ρ and V is of order gSM/(2gρ), where gSM = g, g� are the EW gauge couplings and

gρ is the interaction strength of the vector ρ

L(ρ3)
= gρ

�
�abc∂µρ

a
νρ

b
µρ

c
ν

�
. (2.5)

This latter coupling is assumed to be parametrically larger than gSM, as generically realized

in composite models. After EWSB the resulting ρV V vertices are obtained from (2.5) and

the SM trilinear V V V vertex. Therefore they have the same Lorentz structure and are of

the order g2SM/(2gρ)

gρ0W+W− ≈ −g

�
g

4gρ

�
gρ±W±Z ≈ −g

��
g2 + g�2

4gρ

�
(2.6)

4We use ρa=1,2,3 for the gauge basis and ρ0,± for the physical basis.

5



•ρVV interactions generated from ρ-V mixing~

• The parameters: 

1. a: Higgs coupling suppression

2. mρ: the vector mass  

3. cρ: the ρρh coupling

4. gρ: the ρ self-coupling  

gρWW = −g
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mW

mρ
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4gρ
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a
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•ρVV interactions generated from ρ-V mixing~

• The parameters: 

1. a: Higgs coupling suppression

2. mρ: the vector mass / from CCWZ

3. cρ: the ρρh coupling

4. gρ: the ρ self-coupling / gρ expressed in terms of
aρ and mρ and unitarity sum rule
applied             

Its Lagrangian at the lowest order, again in fields and derivatives, is

L(2)
ρ = −1

4
(ρa

µν)
2
+ a2ρ

v2

2

�
gρρ

a

µ
− Ea

µ

�2
, (A.14)

where ρµν ≡ ∂µρν − ∂νρµ + i[ρµ, ρν ] and the mass is given by mρ = aρvgρ. Besides the

coupling to NGB’s, through Ea

µ
, the mass terms generates a new π4

vertex that is relevant

in the ππ elastic scattering.

A.4 Singlet scalars

A singlet under H couples to all invariant operators that one can build with the other fields

(such as π, ρ and matter fields) and that are allowed by the discrete symmetries. In our

model with H = SU(2)C the Higgs boson particle h is even under PLR and thus

L(2)
h

=
1

2
(∂µh)

2
+ V (h) +

v2

2

�
2ah

h

v
+ bh

h2

v2

�
(Πâ

µ
)
2
+

v2

2

�
2ch

h

v
+ dh

h2

v2

��
gρρ

a

µ
− Ea

µ

�2
.

(A.15)

A PLR-odd scalar H has instead the Lagrangian

v2

2

�
2aH

H

v
+ 2bH

hH

v2

�
Πâ

µ
(gρρ

µa − Eµa
) δâa +

v2

2
cH

H2

v2
(Πâ

µ
)
2
+

v2

2
dH

H2

v2
�
gρρ

a

µ
− Ea

µ

�2
.

(A.16)

A.5 Composite fermions

The couplings of elementary fermions to the strong sector are given by,

Lmix = (ūL, d̄L)�
A

L
QA + ūR�

B

R
UB + h.c. , (A.17)

where the composite operators
1 Q ∼ (2, 2)2/3 and U ∼ (1, 1)2/3 of SU(2)L×SU(2)R×U(1)X ,

A = 1, 2, 3, 4 is a SO(4) index, and �L,R are a set of couplings which parametrize the degree

of compositeness. By SU(2)L invariance, �L is the same for uL and dL.

The generic couplings of the chiral fermion QA to NGB’s and the SU(2)C gauge vector

ρ is obtained from the CCWZ formalism. U does not couple at leading order because it

is a singlet. The low-energy Lagrangian is determined by SU(2)C symmetry. Therefore

we must decompose the Q multiplet, 4 = 1 + 3 of SO(3) = SU(2)C : ψa = QA(UA

a
)
∗
and

η = QA(UA

4 )
∗
where U is the NGB matrix, and a = 1, 2, 3 a SO(3) index. The SO(3)

invariants involving the ρ are,

O+ = ψ̄aγ
µ
(ρµ − Eµ(Π))bψc�abc (A.18)

O− = ψ̄aγ
µη(ρµ − Eµ(Π))bδab (A.19)

1At low energies, these operators manifest themselves as particle states.

30

mρ = aρgρv

The hV ρ couplings are determined by the alignment between the hV V vertex (parametrized
by a), and the hρρ vertex (parametrized by cρ):

cρZ � (a− cρ)
g2 − g�2

gρ
�
g2 + g�2

, cρW � (a− cρ)
g

gρ
. (2.7)

Notice that the couplings of the Higgs to ρ0Z vanishes in the limit g = g�. This is because
the ρ is even under the PLR symmetry (which interchanges the SU(2)L and SU(2)R groups),
while the Z is odd in this limit, so there is no ρ0 −Z mixing. The hV ρ vertex controls the
ρ → hV decay which has been recently studied using jet substructure techniques [27]. In
section 4.2 we will show that unitarity arguments suggest that cρ = a, i.e. a vanishing cρV .

We would like to stress that the Higgs-vector system is completely determined by
the four parameters cρ, gρ, mρ, and a. One of the most important points of this work
will be to establish a set of (approximate) relations among these parameters so that we
can study the LHC phenomenology by varying just 2 or 3 of them, see Section 4. For
instance, requiring perturbative unitarity of the scattering amplitudes, in particular V V
elastic scattering, we can relate the parameters (a,mh) to (gρ,mρ). Unitarity in the inelastic
channels can fix cρ as well. In practice, we are going to make reasonable assumptions based
on perturbative unitarity sum rules to reduce the number of free parameters and be more
predictive. This way we will be able to tie the properties of the Higgs to those of the ρ,
with important phenomenological implications. The three parameters that will be used
most in the following are

mρ , cρ , and a , (2.8)

where gρ will be traded for a by imposing the cancellation of the leading term, that grows
with E2, of the VLVL elastic scattering amplitude. We will impose the unitarity sum rule
a2 + 3a2ρ/4 = 1 where aρ = mρ/(gρv). More general and thus less predictive conditions
could be imposed as well. See e.g. [28] where a more general criterion called Partial UV
completion fixes only the order of magnitude of aρ. Our approach differs from [28] because
we are assuming only one extra resonance below a relatively high cutoff Λ ∼ 3 − 5 TeV
which will imply that the couplings must be close to their values set by the unitarity sum
rules (see Sec. 4).

The choice of the set (2.8) is clearly motivated by the fact that a and cρ directly
correlate with the Higgs partial widths into γγ and WW

Γ/ΓSM(h → γγ) �
�
1 +

9

8
cρ +

9

7
(a− 1)− 2

7
(ct − 1)

�2
Γ/ΓSM(h → WW ) = a2 , (2.9)

so that from these important Higgs decay channels we can immediately learn something
about the ρ.

Let us finally notice that in models where the Higgs arises as a pNGB, the hρρ vertex
is forbidden by a shift symmetry, and thus cρ = 0, up to explicit symmetry breaking effects.
cρV still vanishes at leading order in gSM/gρ, because of PLR symmetry. However, the larger
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mh = 2.5 TeV

mρ = 1 TeV

•Elastic scattering

•Growing terms canceled if sum rule 

•How close do I have to be?
         

Unitarity

numbers,

a(α,β)I,J =
1

32π

� +1

−1

d(cos θ)T (α,β)
I (s, cos θ)PJ(cos θ) , (4.1)

where T α,β
I is the scattering amplitude for the process α → β where the two particle

states α and β have definite isospin I, and PJ is the Legendre polynomial for total angular

momentum J . A factor 1/
√
2 is to be added to account for identical particle in the initial or

final state. Then our condition for perturbative unitarity, which takes into account elastic

and inelastic channels, is defined as [39]

σα|a(α,α)I,J |+ 1

|a(α,α)I,J |

�

β �=α

σβ|a(α,β)I,J |2 � 1 (4.2)

We should be aware of the fact that this condition is somewhat arbitrary, since it fixes the

scale where perturbativity is lost. At this scale, by definition, loop corrections introduce

order one corrections to the tree-level amplitudes, and higher-dimensional operators in a

E/Λ expansion become important. For this reason we will consider conservative values of

the cut-off Λ.

4.1 ππ elastic scattering

As prescribed by the equivalence theorem, at high energies the elastic scattering of the

longitudinal polarization of the W and Z is well described by the NGB’s π. Their relevant
interactions for this process are,

π4
:

�
1−

3a2ρ
4

�
1

6v2
�
(∂µπ

aπb
)
2 − (∂µπ

aπa
)
2
�

(4.3)

ρπ2
:

a2ρgρ
2

�abcρaµ(∂
µπb

)πc
(4.4)

hπ2
:

a

v
h(∂µπ

a
)
2 . (4.5)

where the indices a = 1, 2, 3 and we recall that mρ = aρgρv. Using SU(2)C invariance and

crossing symmetry the amplitude for ππ elastic scattering can be written as

A(πaπb → πcπd
) = A(ππ)

s δabδcd + A(ππ)
t δacδbd + A(ππ)

u δadδbc (4.6)

where A(ππ)
s = A(s, t, u)(ππ), A(ππ)

t = A(t, s, u)(ππ), A(ππ)
u = A(u, t, s)(ππ) is a function of the

Mandelstam variables s, t and u (s+ t+ u = 0). One then has,

A(s, t, u)(ππ) =
s

v2
−

a2ρ
4v2

�
3s+m2

ρ

�
s− u

t−m2
ρ

+
s− t

u−m2
ρ

��
− a2

v2

�
s2

s−m2
h

�
(4.7)
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where we have not included any widths in the propagators, but these can be introduced

trivially.
1
The decomposition of such a 3 × 3 isospin amplitude in eigenstates of isospin,

1,3,5, is given by the combinations

T0 = 3As + At + Au, T1 = At − Au, T2 = At + Au (4.8)

Regardless of the isospin or angular momentum of the amplitudes for ππ elastic scat-

tering, the linear growth in s for s � mρ,mh will always be cancelled if the following sum

rule is satisfied,

a2 +
3

4
a2ρ = 1 (4.9)

Imposing such a relation does not mean that ππ elastic scattering will remain perturbative

up to arbitrarily high energies. The amplitudes still contain logarithmically growing pieces

associated with ρ exchange, and finite terms dependent on mρ and mh, which may spoil

perturbativity. To explain the importance of these considerations, we show in the left

plot of Fig. 6 the regions allowed by perturbative unitarity in aππ,ππ0,0 (ππ elastic scattering

in isosinglet and s-wave channel) up to a cut-off of Λ = 5TeV, in the (a2ρ, a
2
) plane for

three different scenarios: light resonances, mh,mρ � Λ, a heavy Higgs, mρ < mh < Λ,
and a heavy rho, mh < mρ < Λ, and compared them with the sum rule Eq. (4.9). As

expected, the sum rule is most closely followed when both scalar and vector are light. We

also reproduce previous results in Higgsless models [33, 37], where it was shown that in

the absence of a scalar, a = 0, a vector resonance unitarizes most efficiently for values

somewhat above the sum rule value aρ = 2/
√
3. When the scalar is heavy, its relevance

in ππ scattering is limited, a � 0.8. If instead the vector resonance is heavy, it must be

strongly coupled to efficiently unitarize. In the right plot of Fig. 6 we show how much one

can relax the sum rule Eq. (4.9) when the cut-off is varied from 5 to 3TeV. These plots

give an idea on how much one can depart from Eq. (4.9) in ππ elastic scattering. Since we

are mostly interested in the scenario with a light h and a relatively light ρ, we are going to

assume in the following that the sum rule holds.

If perturbativity of ππ scattering were to give the only non-trivial constraint, in par-

ticular from the largest amplitude aππ,ππ0,0 , then we could already establish the allowed pa-

rameter space in the phenomenologically interesting plane (mρ, a2). This is shown in Fig. 7,

where we consider a light Higgs, mh = 125GeV, and we take the cut-off where unitarity is

eventually lost at Λ = 2mρ, 3mρ. We also show the exclusion lines for Λ = 3, 5TeV. The

region a � 1 is allowed regardless of mρ, since there the unitarization is carried out almost

exclusively by the light Higgs. In particular, if Λ = 2mρ then perturbativity admits ρ’s as
heavy as 2.5TeV if a � 0.8. For smaller values of a, the unitarization is partly taken over

by the vector resonances, which must then be lighter. Notice that for a = 0 the heaviest

allowed resonance is about 1.3TeV for Λ = 2mρ. In [23, 37, 38] heavier vector resonances

1
Their effect would be relevant for our analysis if the mass of the exchanged particle was close to Λ in

comparison to the width. However, in that case higher order operators, suppressed by (mh,mρ)/Λ should

also be considered.
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Figure 6: Regions allowed by perturbative unitarity in aππ,ππ0,0 (ππ elastic scattering in the

isosinglet s-wave channel) in the (a2ρ, a
2
) plane. Left: requiring a cut-off of Λ = 5TeV, for

three different mass choices: mh = 125GeV and mρ = 1TeV (solid red), mh = 2.5TeV
and mρ = 1TeV (dashed green), and mh = 125GeV and mρ = 2.5TeV (dot-dashed blue).

Right: for mh = 125GeV and mρ = 1TeV, and a cut-off Λ = 5TeV (solid), and Λ = 3TeV

(dashed). The solid black line corresponds to the the sum rule Eq. (4.9).

were allowed since the upper bound aρ � 2/
√
3 was not imposed. Relaxing our sum rule

a2 + 3a2ρ/4 = 1, we can relax our upper bound on mρ for any given a.

The next section is devoted to study ππ inelastic scatterings. These are relevant to

establish further relations in the parameter space of our h − ρ system. In addition, we

will see that the maximum cut-off is actually set by the inelastic channels in some regions

of parameter space, assuming that no additional resonances besides the ρ’s appear below
Λ � 2mρ.

4.2 ππ inelastic scattering

We have shown in the previous section that if the coupling of the Higgs to WW deviates

significantly from its SM value, the rho’s can cure the high energy behavior of the ππ
elastic amplitude , thus keeping a relatively large cut-off compared to the EW scale. While

a single singlet scalar is enough to fully unitarize a theory with massive W ’s up to arbitrary

high energy scales, this is not the case in the presence of the extra set of massive vectors.

The ρ scattering amplitudes put further constraints on the parameter space of our effective
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•Will impose sum rule and eliminate one parameter

•Region allowed from elastic unitarity:

•Sum rules satisfied in explicit model (eg. gauge-
phobic higgs)
         

Unitarity
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Figure 7: Regions excluded by perturbativity unitarity in aππ,ππ0,0 (ππ elastic scattering

in isosinglet and s-wave channel) in the (mρ, a2) plane, for Λ = 2mρ (solid) and Λ =

3mρ (dashed). We also show the exclusion lines for Λ = 3, 5TeV, black thick and thin

respectively.

Lagrangian. The relevance of such processes depends on the scale of perturbative unitarity

violation: for instance inelastic ππ scattering into ρρ only matters for Λ > 2mρ. Recall

that new states at or below Λ are expected to participate in the unitarization processes.

For instance, in Higgsless models [33] realized in a warped extra-dimension, additional light

vector resonances raise the non-perturbative scale above the naive 4D cut-off ΛNDA � 4πv.
This is accomplished only if the first resonance is light, in which case inelastic channels

must also be taken into account. If instead the resonances are heavy, the 5D cut-off is

not much different from the 4D cut-off [39]. This expectation changes in our scenario,

thanks to the light Higgs scalar. In this case a single extra vector resonance can maintain

a moderately large cut-off above ΛNDA, with masses heavier than in perturbative Higgsless

models. The scattering amplitudes of h must then also be considered, which give further

non-trivial unitarity constraints.

We should however emphasize that additional resonances can contribute to the uni-

tarization of the ππ inelastic channels, without modifying the sum rule, Eq. (4.9), from

the elastic process. The reason for this is PLR conservation: any state participating in

ππ → ππ must have positive parity, thus states with negative parity might modify (or even

completely unitarize) some of the channels considered in this section, without affecting our

conclusions in the previous section. We comment on such states below.

The inelastic channels one can consider are ππ → hh, ρLρL, ρLh. Here we present the
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•Inelastic channels ππ→ρρ

•ππ→hh

•ππ→hρ

•Will assume     

•Other channels require additional heavy states,
could be close to cutoff (axial vector, heavy P odd 
H,...)

Unitarity

isospin structure and the high energy behavior of their amplitudes [35]. This is what we are

mostly interested in if we want to derive relations between the parameters of the Lagrangian

which render these amplitudes well behaved at high energies. Several additional interaction

terms become relevant here, as explained in Appendix A

ρ3 : gρ�
abc

(∂µρ
a
ν)ρ

b
µρ

c
ν (4.10)

h2π2
:

b

2v2
(∂µπ

a
)
2h2

(4.11)

hρ2 : cρa
2
ρg

2
ρvh(ρ

a
µ)

2. (4.12)

The general structure of the ππ → ρLρL scattering amplitude is of the form

A(πaπb → ρcLρ
d
L) = A(ρLρL)

s δabδcd + A(ρLρL)
t δacδbd + A(ρLρL)

u δadδbc (4.13)

where A(ρLρL)
s = A(s, t, u)(ρLρL), A(ρLρL)

t = B(s, t, u)(ρLρL), A(ρLρL)
u = B(s, u, t)(ρLρL), and

A(s, t, u)(ρLρL) =
s

v2

�
a cρ −

1

4

�
a2ρ + · · · (4.14)

B(s, t, u)(ρLρL) =
s

4v2
(a2ρ − 1) +

t

4v2
(a2ρ − 2) + · · · (4.15)

where the ellipses stand for sub-leading terms in s, t, u (s+ t+ u = 2m2
ρ). This amplitude

can again be decomposed in 1,3,5 eigenstates of isospin, as in Eq. (4.8) for ππ → ππ.

For ππ → hh, an isospin-0 process, one has

A(πaπb → hh) = A(s, t, u)(hh)δab (4.16)

with

A(s, t, u)(hh) =
s

v2
(a2 − b) + · · · (4.17)

For ππ → ρLh, an isospin 1 process, one finds

A(πaπb → ρcLh) = A(s, t, u)(ρLh)�abc (4.18)

where

A(s, t, u)(ρLh) = i
t− u

2v2
(a− cρ)aρ (4.19)

For this process the s-wave amplitude vanishes, thus it is the vector channel that gives the

strongest unitarity constraint.

From these results, one can draw several conclusions. The inelastic channel ππ → hh
will not lead to a violation of perturbative unitarity, as long as the Higgs is light, if b = a2.
However, the ππ → ρLρL and ππ → ρLh can not be simultaneously unitarized in all

channels without additional states. The linear growth of Eq. (4.15) proportional to s or t
cannot be both eliminated (these would show up in different partial wave amplitudes). The
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cancellation of the remaining growing terms in ππ → ρLh and ππ → ρLρL in Eq. (4.14),

along with the sum rule from ππ → ππ imply the specific values aρ = 1, a = 1/2, cρ = 1/2.

This is easily understood from the fact that the our effective Lagrangian with massive W ’s,

ρ’s and the scalar has a “weak ultraviolet completion” into a two Higgs doublet model

if an extra scalar, H, odd under PLR, is introduced [35] (in addition to the h which is

assumed to be even under PLR). The extra coupling of this additional H, of the form

aHvgρH(∂µπa
)ρbµδab, contributes to the term growing linearly with t in Eq. (4.15) (without

contributing to the term growing with s), which allows all amplitudes to be simultaneously

unitarized for aH = 1/2. It is important to notice that H would not couple linearly to ππ,
so it would not modify the behavior of ππ elastic scattering. Furthermore, its couplings

to fermions could be set to zero, since the unitarization of processes ππ → ff̄ can be

carried out completely by the Higgs if cf = 1. Therefore unitarization of the ππ inelastic

scattering amplitudes could be carried out by extra heavy states without affecting the

LHC phenomenology of the W ’s, h and ρ’s very much. Another possible state that could

partially unitarize ππ inelastic channels without affecting the elastic one is an axial vector

resonance, that is, a copy of the ρ which is odd under PLR. Such a state could participate

in the unitarization of all the inelastic channels. The introduction of such an axial vector

generically gives a negative contribution to the S-parameter, which could help alleviate the

bounds on mρ from electroweak precision bounds (see Section 5).

Following the previous discussion, we will be assuming that the following sum rules

are satisfied

b = a
2

(4.20)

cρ = a (4.21)

They lead to the cancellation of the terms growing with energy in ππ → hh and ππ → ρLh
amplitudes, thus they point to a particularly interesting region of parameter space for the

couplings b and cρ where the perturbative behavior of our Lagrangian is improved. They

are not modified by the inclusion of extra states such as the parity odd Higgs, or the axial

vector resonance as long as its coupling to (∂µπ)h is small. The sum rule of Eq. (4.20) is also

satisfied in the SM, while Eq. (4.21) corresponds to the case where the mass and the coupling

to the Higgs of the vector bosons are aligned, as shown in Eq. (2.7). Nevertheless, these

relations are not robust predictions, thus one should keep a flexible approach. Finally notice

that amplitudes with different isospin or angular momentum select different components

of the full scattering amplitudes, thus some of them are sensitive to the sum rules while

others are not. This is the reason why it is important to consider different channels.

In order to show how effective the sum rules Eqs. (4.6, 4.20, 4.21) are in maintaining

perturbative unitarity of scattering amplitudes, we show in Fig. 8 the maximum allowed

cut-off from the requirement Eq. (4.2), as a function of the mass of the ρ, for two particular

values of the Higgs couplings to WW , a = 0.5 (left) and a = 0.8 (right). We recall

again that the values of Λ obtained from unitarity are not very robust, although several

important pieces of information can be obtained. The Higgs scalar significantly improves
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•Loops of ρ will contribute just like W loops

•Suppression of higgs coupling can be compensated

Effect of ρ on h→γγ

3 Higgs boson rates: enhancement of h → γγ

The Higgs boson effective coupling to photons, parametrized by cγ in (2.1), is very im-
portant at the LHC because it corresponds to a discovery channel with small background
and good energy resolution, which allows a precise measurement of the Higgs mass. This
coupling, although vanishing at tree-level, is generated at one loop, being sensitive to new
physics that contains charged states coupled to the Higgs boson. In our effective theory
this vertex is controlled by the Higgs couplings to W+W−, tt̄ and ρ+ρ−, via a, ct and cρ
respectively. The one-loop contribution from these states gives

cγ =
1

8

�
ct ×Nc × (2/3)2 × F1/2(xt) + a× F1(xW ) + cρ × F1(xρ)

�
(3.1)

where xi = 4m2
i /m

2
h, and the values of the functions1 F1/2 , 1(x) are close to their large

x limit for the top and the ρ, F1/2(xt) ≈ −4/3 and F1(xρ) ≈ 7, whereas for the W the
contribution is somewhat larger, F1(xW ) ≈ 8. The resulting width into photon pairs is thus
modified with respect to the SM value

Γ/ΓSM(h → γγ) �
�
1 +

9

8
cρ +

9

7
(a− 1)− 2

7
(ct − 1)

�2
. (3.2)

Possible extra axial vector resonances Aµ, coupled to the Higgs via a cam2
aA

2
µh/v vertex,

can be trivially taken into account just by sending cρ → cρ + ca.

As shown in Fig. 4, a sizable enhancement in the decay rate of the Higgs to γγ is
possible if cρ is not tiny, even with ct = 1. In fact, unitarity sum rules in the inelastic
channels ππ → ρLh and ππ → ρLρL yield the relations cρ = a and a cρ = 1/4 respectively
(see Section 4.2 for more details), which imply important deviations in Γ(h → γγ). In
particular, as shown in the right panel of Fig. 4, for a � cf = 1 we can get large enhance-
ments, ranging from 1.5 to 4 times the SM rate . The sum rule that arises from ππ → ρLh
gives the largest deviations. On the other hand, in models where the Higgs is a composite
pNGB, cρ is suppressed, due to the associated shift symmetry acting on h that forbids any
non-derivative couplings. The same protection mechanism for the Higgs mass term also
results in a suppression of the hF 2 coupling.

From the other partial widths

Γ/ΓSM(h → bb̄) =c2b , Γ/ΓSM(h → V V ∗) = a2 , Γ/ΓSM(h → τ τ̄) = c2τ , (3.3)

Γ/ΓSM(h → cc̄) =c2c , Γ/ΓSM(h → gg) = c2t ,

1The exact one-loop result used in Figs. 4 and 5 is given (for x > 1) by

F1/2(x) = −2x[1 + (1− x) arcsin2(x−1/2)] F1(x) = 2 + 3x+ 3x(2− x) arcsin2(x−1/2)
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Figure 4: Γ/ΓSM(h → γγ). Left: contours in the (cρ, a
2
) plane, for ct = 1. The dashed red

and dot-dashed black lines are for the cρ = a and 4cρa = 1 sum rules respectively (that

remove the O(s) growth in ππ → ππ and ππ → ρLρL scattering amplitudes). Right: for cρ

fixed by the previous sum rules, and ct = 1. We have taken mρ = 1.5TeV and a > 0.

one can easily calculate the corresponding branching ratios. For instance, the BR into

photon pairs is

BR

BRSM
(h → γγ) �

�
1 +

9
8cρ +

9
7(a− 1)− 2

7(ct − 1)
�2

c2bBRSM(h → bb̄) + a2BRSM(h → V V ∗) + . . .
(3.4)

Note, that the apparent non-decoupling effect of the ρ-contributions is merely an artifact of

the parametrization of the hρρ coupling in (2.4). The standard decoupling limit corresponds

to cρm
2
ρ = fixed.

The various Higgs production channels in the SM are also rescaled

σ

σSM
(gg → h) � σ

σSM
(gg → htt̄) = c

2
t

σ

σSM
(qq̄ → hjj) =

σ

σSM
(qq̄ → hW ) = a

2
. (3.5)

At the LHC only the product σ × BR is measured. We show in Fig. 5 the combined

effect of the Higgs anomalous couplings on production times branching ratio into photons,

normalized to the SM prediction, for two particularly interesting channels in light of current

LHC results, gluon fusion gg → h → γγ and vector boson fusion qq̄ → hjj → γγjj (VBF).
Notice that enhancements ranging from 1.5 to 3 times the SM prediction are reproduced

for moderately large values a, ct � 0.7. Thus we can see that a suppression of the Higgs

couplings to gauge bosons does not necessarily lead to a strong suppression of the h → γγ
branching ratio as one might expect for gauge-phobic models [32].
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•The effect on σ Br:

•Along unitarity sum rule (and where a not too small)
mostly enhanced

Effect of ρ on h→γγ
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Figure 5: Contour-lines for σ×BR relative to SM prediction in the (ct, a2) plane, for Higgs
decaying to photon pairs in the gluon fusion channel gg → h → γγ (left) and the vector

boson fusion channel qq̄ → γγjj (right). The sum rule cρ = a has been enforced, and

cb, cτ , cc = 1. We have taken mρ = 1.5TeV and a > 0.

Finally, we stress that there is another interesting Higgs production mechanism via the

decays of the ρ’s. In our scenario the decay rate of ρ → V h is generically small, since it is

suppressed by g2SM/g2ρ compared to ρ → V V . An enhancement of the former channel could

be due to PLR breaking. Also, notice that the decay of an axial vector resonance, A, to hV
is not forbidden by parity, and it actually dominates since in this case it is the A → V V
decay that is suppressed. In both cases Γ(ρ (A) → V h) could be as large as Γ(ρ → V V )

(see Appendix B) and thus a sizable number of boosted Higgs and gauge bosons would be

produced in qq̄ → ρ (A) → V h with σ(qq̄ → ρ, A) ∼ few fb at 1 TeV.

4 Unitarity in Electroweak Gauge Boson Scattering

In this section we wish to explore the regions of parameter space of our low-energy effective
Lagrangian where perturbative behavior is retained at high energies, E � mh,mρ. We

focus on the 2 → 2 scattering amplitudes involving the longitudinal components of the

electroweak gauge boson, WL, the composite Higgs, h, and the longitudinal components

of the extra vector resonance, ρL. A priori these amplitudes grow as a power with energy.

By requiring the cancelation of the growing terms, we will identify particularly appealing

regions for the parameters a, aρ = mρ/(gρv), and cρ, thereby improving the consistency

of our phenomenological Lagrangian at high energies. In practice we will require a set of

precise relations among them, even though some deviations can be allowed. Recall that
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one can easily calculate the corresponding branching ratios. For instance, the BR into

photon pairs is
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Note, that the apparent non-decoupling effect of the ρ-contributions is merely an artifact of

the parametrization of the hρρ coupling in (2.4). The standard decoupling limit corresponds

to cρm
2
ρ = fixed.

The various Higgs production channels in the SM are also rescaled

σ

σSM
(gg → h) � σ

σSM
(gg → htt̄) = c

2
t

σ

σSM
(qq̄ → hjj) =

σ

σSM
(qq̄ → hW ) = a

2
. (3.5)

At the LHC only the product σ × BR is measured. We show in Fig. 5 the combined

effect of the Higgs anomalous couplings on production times branching ratio into photons,

normalized to the SM prediction, for two particularly interesting channels in light of current

LHC results, gluon fusion gg → h → γγ and vector boson fusion qq̄ → hjj → γγjj (VBF).
Notice that enhancements ranging from 1.5 to 3 times the SM prediction are reproduced

for moderately large values a, ct � 0.7. Thus we can see that a suppression of the Higgs

couplings to gauge bosons does not necessarily lead to a strong suppression of the h → γγ
branching ratio as one might expect for gauge-phobic models [32].
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the parametrization of the hρρ coupling in (2.4). The standard decoupling limit corresponds
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2
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At the LHC only the product σ × BR is measured. We show in Fig. 5 the combined

effect of the Higgs anomalous couplings on production times branching ratio into photons,

normalized to the SM prediction, for two particularly interesting channels in light of current

LHC results, gluon fusion gg → h → γγ and vector boson fusion qq̄ → hjj → γγjj (VBF).
Notice that enhancements ranging from 1.5 to 3 times the SM prediction are reproduced

for moderately large values a, ct � 0.7. Thus we can see that a suppression of the Higgs

couplings to gauge bosons does not necessarily lead to a strong suppression of the h → γγ
branching ratio as one might expect for gauge-phobic models [32].
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•Electroweak precision

•Tree-level UV contribution

•And loop IR contribution due to modified Higgs

Constraints on ρ: EWP

one finds [23,34,37,45]

δT̂UV =
3g� 2

128π2
a2ρ

�
(3− a2ρ) log

Λ

mρ
− 1

3
log

mρ

mW

�
. (5.5)

We show in Fig. 9 the contours of Ŝ = 10−3 and T̂ = −10−3 on the (mρ, a2) plane,
assuming also a cancellation (tuning) against other contributions, e.g. tree-level axial vector
resonance, vertex corrections due to fermion compositeness [46,47], one-loop contributions
from fermions [48], and/or higher-dimensional operators [28]. For example, it is possible
to reduce the strong sector contribution to Ŝ by adding an axial vector that transforms in
the adjoint of SU(2)C with the following Lagrangian
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that in turn gives

Ŝ → Ŝ − α2m
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. (5.7)

See [23] for a more detailed and complete analysis on the spin-1 resonances contribution to
Ŝ and T̂ .
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Figure 9: Contour-lines for Ŝ = 10−3 (left) and T̂ = −10−3 (right) with Λ = 3 TeV,
assuming cancellations between the ρ and other contributions of 100%, 50% or 30% fine
tuning.
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Finally, let us point out that the limit a → 1 does not on its own yield particularly

large Λ’s, and one may wonder why the cutoff does not become very large in this case. The

reason is that one still has the inelastic ππ → ρρ channels to worry about, which will be

unitarized only if in addition one takes the ρ-mass to infinity and thus mρ � s.

5 Electroweak Precision Constraints

Electroweak precision constraints have long been known to plague strongly coupled models

of electroweak symmetry breaking. Due to mixing of vector resonances of the strong sector

with electroweak gauge fields, predictions for weak scale observables, such as W and Z
coupling and masses, are modified from their SM values. In this section we study the most

dangerous of these, encoded in the S and T parameters, and identify regions of parameter

space in which electroweak precision observables do not disfavor strong dynamics.

The electroweak precision constraints can be encoded in the oblique parameters [40–42]

if the light quarks and leptons are fundamental. By integrating out the ρ triplet we can

determine the low-energy corrections to the transverse self energies ΠV (p2) at tree-level

where V = {W+W−,W3W3, BB,W3B}:

Π�
W3B(0) =

1

4g2ρ
Π�

W3W3
(0) = Π�

W+W−(0) =
1

g22
+

1

4g2ρ
Π�

BB(0) =
1

g21
+

1

4g2ρ
ΠW+W−(0) = ΠW3W3(0) = −v2/4 . (5.1)

From these expressions one can extract the EWPT parameters Ŝ and T̂ at tree-level:

Ŝ =
g22

g22 + 4g2ρ
� a2ρ

m2
W

m2
ρ

T̂ = 0 (5.2)

where we use the notation of [41]. The T̂ -parameter vanishes because of custodial symmetry.

The other oblique parameters, Û , V , X, Y , W and Z are either vanishing or suppressed by

extra powers ofm2
W/m2

ρ with respect to Ŝ. Constraints on the model are thus dominated by

Ŝ. In addition to this tree-level contribution from UV resonances, there are other sizable

contributions [43] from Higgs loops with non-SM couplings to W and B gauge bosons,

a �= 1:

δŜIR =
g2

96π2

��
1− a2

�
log

�
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mh

�
+ log

�
mh

mh(ref)

��
(5.3)

δT̂IR =− 3g� 2

32π2

��
1− a2

�
log

�
Λ

mh

�
+ log

�
mh

mh(ref)

��
, (5.4)

where we take mh(ref) = 117 GeV, as in [44]. The other UV contribution to T̂ from loops

with ρ is generically much smaller. Assuming the unitarity sum rule cρ = a for simplicity
1

1For cρ �= a we find no extra divergent contributions to Eq. (5.5).
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a = 0

a = 0.9

•Charged ρ

•Production cross section (mainly DY):

Collider Constraints on ρ
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Figure 10: The total LHC7 cross section for resonant production of the charged ρ’s for

a = 0 (solid line) and for a = 0.9 (dashed line).

6.1 Direct bounds on charged heavy vectors

The coupling of the heavy vector charged mass eigenstates to a species of fermion take the

following form (see Eq. A.20 in A.5) :

Lρff = ρ±µ f̄
i
smγ

µf j
sm

�
gρ√
2
c±ρ s

2
f −

g√
2
s±ρ c

2
f

�
(6.1)

where s±ρ is the sine of the mixing angle between the custodial triplet and the SU(2)L gauge

fields, and sf is the sine of the mixing angle that defines the admixture of a composite

fermion in a SM fermion mass eigenstate.
1

These couplings arise after diagonalizing the

gauge boson and fermion mass matrices. The mixing terms between fundamental and

composite fermions are explained in the Appendix and given in Eq. (A.17). The generic

phenomenological effects of the mixing of the fundamental fermions with composite ones

will be to increase the relative branching fraction of the ρ mesons to LH fermion fields,

decreasing the di-boson signal.

The strongest direct search bounds arise from di-boson decays of the electrically

charged ρ mesons. For most values of the parameters, there is a substantial branching

fraction for the decay ρ± → W±Z. This is especially true in the case when all SM fermions

are fundamental, in which case this decay dominates the branching fraction for most values

1It is in principle possible to arrange the mixing angles associated with the fermion mass eigenstates
such that the light fermion mass eigenstates do not couple at all to the heavy vectors. In fact, this arises in
a natural way in warped extra dimensional models in which the 5D bulk mass parameter for the fermions
is close to the value which generates a flat profile for the light fermion. The small coupling arises then
from a wave-function orthogonality relation [46,47].
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•Charged ρ

•Decay depends on coupling to fermions, diboson
ρ→WZ always significant

Collider Constraints on ρ
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Figure 11: The branching fractions of the charged ρ mesons to W±Z, light jets, t̄b, and a
single lepton species for different values of a, and for different degrees of compositeness for
the LH third generation quarks. On the top left is the case when all fermions are purely
fundamental (the branching ratios are independent of a in this case). On the remaining
plots, we assume that the third generation LH quarks are purely composite. The top right
is composite third generation with a = 0, the bottom left is a = 0.5 and the bottom right
is a = 0.9.

W+W−. A recent paper attempts to use the CMS and ATLAS Higgs search constraints
to place limits on such particles [53]. In principle, the Higgs searches in the W+W− final
state places limits on the ρ0 mass, however this search is highly optimized for a Higgs boson
with SM couplings, and the results are difficult to interpret in terms of a generic resonance
search. While the ρ0 is primarily produced via Drell-Yan, the SM Higgs is produced in
a combination of gluon and vector-boson fusion, with VBF dominating in the high mass
region.

Additionally, if the third generation LH fermions are primarily composite, the ρ0 may
couple strongly to t̄t and b̄b final states, although this coupling is model dependent. In
fact, as discussed in Section 2, the coupling of the ρ3 to the composite top is vanishing in
the presence of a PL,R symmetry. Since the ρ0 is in the SU(2)C triplet, and RH composite
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•Charged ρ→WZ→3l+ν CMS W’ diboson search

•Large region allowed for 700 GeV < mρ<2 TeV 

Collider Constraints on ρ
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Figure 12: In the plot on the left, we show the exclusion regions both from theoretical

considerations (the dashed contours) arising from constraining the model to remain unitary

up to the cutoff scale Λ = 3 TeV or Λ = 5 TeV, and from the CMS direct search constraints

(solid contours). Two extremes of compositeness for the third generation LH fermions are

considered. All fermions are presumed to be completely elementary for the first contour

(excluded region shaded light gray), and in the other, the third generation quarks are

taken to be purely composite (shaded dark gray) with fundamental 1st and 2nd generation

fermions. In the plot on the right, we superimpose the tuning required to satisfy constraints

on the S-parameter on the unitarity bound on mρ with Λ = 3 TeV, and on the collider

bounds when the 3rd generation left-handed fermions are completely composite.

fermions are chosen to be singlets of this group, there are no large couplings of the ρ0

to these composite degrees of freedom. Extensive searches have been performed for t̄t
resonances in the context of Z �

models and in searches for Kaluza-Klein gluons, and these

can be used to place limits on the ρ0 mass and couplings.

The ρ0 is produced in Drell-Yan, like the ρ±, and its cross section is similar in mag-

nitude. At mρ0 ∼ 1 TeV, the production cross section is about .05 pb. This cross section

is far below the current limits in either the boosted or non-boosted t̄t resonance searches,

which are in the 1− 0.1 pb range for mρ0 ∼ 1− 3 TeV. The search for the charged compo-

nents of the custodial triplet of vectors thus places the strongest limits, even when decays

to composite t and b quarks dominate the width.
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•Neutral ρ: WW decay should be searchable

•Higgs→WW search very hard to reinterpret, highly 
optimized to higgs (DY production vs. VBF/gluon)

•Production σ~0.05 pb too small for boosted/non-
boosted ttbar resonance searches.

Collider Constraints on ρ



3. Techni-dilaton at 125 GeV?

An optimistic picture:

•Strong dynamics almost conformal

•Gets strong, produces condensate 

•Breaks EWS and conformality

•Produces dilaton with f~v

(Bellazzini, C.C., Hubisz,
Serra, Terning in progress)

�O� ∼ v



•Coupling to fields:

•If f~v about ``right” coupling to massive fields

•Coupling to gluon, photon mostly from trace anomaly

• bIR-bUV is the same form as in SM, can get arbitrarily 
close (or far) from SM answer by playing with the CFT 
matter content

3

the VEV is χ̄(x) = χ(x) − f. Expanding about 〈χ〉 = f ,
one gets the standard result

Lχ =
1

2
∂µχ̄∂µχ̄ +

χ̄

f
T µ

µ + · · · , (5)

with T µ
µ as in Eq. (3).

B. Electroweak sector

A convenient, model-independent description of a
strongly interacting Higgs sector is in terms of the elec-
troweak chiral Lagrangian [10]. Introducing a 2 × 2 uni-
modular matrix field U(x), the dynamics of the EWSB
sector at energies below ΛEW ∼ 4πv & 1 TeV is given by

LEW = LχEW + Lψ + LY , (6)

with

LχEW = −
1

4
(Bµν)2 −

1

2
trW 2

µν +
1

4
v2trDµU †DµU + · · · ,

(7)
where the covariant derivative of U(x) is

DµU = ∂µU + ig1BµU
τ3

2
− ig2

%Wµ ·
%τ

2
U, (8)

and

LY = −Q̄LUmqqR − L̄LUm$&R + h.c. (9)

where mq/v, m$/v are quark and lepton Yukawa matri-
ces2. The term Lψ contains the usual fermion kinetic
energy operators.

In the unitary gauge, U = 1, LχEW above describes the
kinetic and mass terms for the SU(2)L × U(1)Y gauge
fields. Terms omitted in Eq. (7) are higher derivative
operators that encode the various precision electroweak
parameters with coefficients that scale as inverse powers
of the scale ΛEW . We simply assume that these coeffi-
cients are adjusted to be consistent with the measured
experimental values of the electroweak observables. We
have also neglected an additional custodial SU(2) vio-
lating two-derivative operator whose coefficient is exper-
imentally known to be small.

It is clear that the gauge boson and fermion mass terms
include the coupling of gauge fields to the dilaton as,
the replacement v → vχ/f makes Eq. (6) formally scale
invariant. Expanding about 〈χ〉 = f gives the couplings
of the dilaton to the SM gauge bosons and fermions at
tree level

Lχ,SM =

(

2χ̄

f
+

χ̄2

f2

) [

m2
W W+

µ W−µ
+

1

2
m2

ZZµZµ

]

+
χ̄

f

∑

ψ

mψψ̄ψ, (10)

2 We have written the right-handed fermions as custodial SU(2)
doublets, so that mq,! is a 2× 2 diagonal matrix of 3× 3 blocks,
with the lower block of m! set to zero.

which are identical in form to the couplings of a minimal
Higgs boson.

C. Dilaton self couplings

In the limit of exact scale invariance χ is derivatively
self-coupled. Ignoring for the time being terms that ex-
plicitly break the symmetry, self-interactions of the dila-
ton take the form

Lχ =
1

2
∂µχ∂µχ +

c4

(4πχ)4
(∂µχ∂µχ)2 + · · · , (11)

where the constant c4 ∼ O(1) depends on the details of
the underlying CFT. The inverse powers of χ are neces-
sary to ensure that Lχ transforms correctly under scal-
ings.

In addition, the theory may possess explicit sources
of scale symmetry breaking. For example, suppose that
conformal invariance is broken by the addition of an op-
erator O(x) with scaling dimension ∆O (= 4 to the La-
grangian,

LCFT → LCFT + λOO(x). (12)

It is straightforward to include this pattern of symmetry
breaking by the introduction of a spurion field into the
low-energy effective theory. This spurion constrains the
non-derivative interactions of χ(x) to be of the form [11]

V (χ) = χ4
∞
∑

n=0

cn(∆O)

(

χ

f

)n(∆O−4)

, (13)

where the coefficients cn ∼ λn
O depend on the dynamics

of the underlying CFT. By assumption, this dynamics
must be such that V (χ) is minimized at 〈χ〉 = f with
m2

χ = d2V (〈χ〉)/dχ2 > 0. In general, the coefficients cn

are functions of the scaling dimension, which we assume
are non-singular in the limit ∆O → 4.

It is not possible to make detailed predictions without
knowledge of the coefficients cn in V (χ) unless there ex-
ists a small expansion parameter. Here we are interested
in the case where the explicit conformal breaking term
above is small. This can be either because the opera-
tor O is nearly marginal (|∆O − 4| ) 1), as is the case
in walking technicolor theories or RS models stabilized
by the scenario of [12], or because the coefficient λO is
chosen to be small in units of f , as in the case of the
minimal Higgs model. If this happens, it is possible to
obtain definite expressions for the dilaton self-couplings
once the parameters m and f are fixed. We find that the
potential is

V (χ̄) =
1

2
m2χ̄2 +

λ

3!

m2

f
χ̄3 + · · · , (14)

where m2 ) f2 is proportional to the small symmetry
breaking parameter: m2/f2 ∝ λO for λO ) 1 (in units of
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experimental values of the electroweak observables. We
have also neglected an additional custodial SU(2) vio-
lating two-derivative operator whose coefficient is exper-
imentally known to be small.

It is clear that the gauge boson and fermion mass terms
include the coupling of gauge fields to the dilaton as,
the replacement v → vχ/f makes Eq. (6) formally scale
invariant. Expanding about 〈χ〉 = f gives the couplings
of the dilaton to the SM gauge bosons and fermions at
tree level

Lχ,SM =

(

2χ̄

f
+

χ̄2

f2

) [

m2
W W+

µ W−µ
+

1

2
m2

ZZµZµ

]

+
χ̄

f

∑

ψ

mψψ̄ψ, (10)

2 We have written the right-handed fermions as custodial SU(2)
doublets, so that mq,! is a 2× 2 diagonal matrix of 3× 3 blocks,
with the lower block of m! set to zero.

which are identical in form to the couplings of a minimal
Higgs boson.

C. Dilaton self couplings

In the limit of exact scale invariance χ is derivatively
self-coupled. Ignoring for the time being terms that ex-
plicitly break the symmetry, self-interactions of the dila-
ton take the form

Lχ =
1

2
∂µχ∂µχ +

c4

(4πχ)4
(∂µχ∂µχ)2 + · · · , (11)

where the constant c4 ∼ O(1) depends on the details of
the underlying CFT. The inverse powers of χ are neces-
sary to ensure that Lχ transforms correctly under scal-
ings.

In addition, the theory may possess explicit sources
of scale symmetry breaking. For example, suppose that
conformal invariance is broken by the addition of an op-
erator O(x) with scaling dimension ∆O (= 4 to the La-
grangian,

LCFT → LCFT + λOO(x). (12)

It is straightforward to include this pattern of symmetry
breaking by the introduction of a spurion field into the
low-energy effective theory. This spurion constrains the
non-derivative interactions of χ(x) to be of the form [11]

V (χ) = χ4
∞
∑

n=0

cn(∆O)

(

χ

f

)n(∆O−4)

, (13)

where the coefficients cn ∼ λn
O depend on the dynamics

of the underlying CFT. By assumption, this dynamics
must be such that V (χ) is minimized at 〈χ〉 = f with
m2

χ = d2V (〈χ〉)/dχ2 > 0. In general, the coefficients cn

are functions of the scaling dimension, which we assume
are non-singular in the limit ∆O → 4.

It is not possible to make detailed predictions without
knowledge of the coefficients cn in V (χ) unless there ex-
ists a small expansion parameter. Here we are interested
in the case where the explicit conformal breaking term
above is small. This can be either because the opera-
tor O is nearly marginal (|∆O − 4| ) 1), as is the case
in walking technicolor theories or RS models stabilized
by the scenario of [12], or because the coefficient λO is
chosen to be small in units of f , as in the case of the
minimal Higgs model. If this happens, it is possible to
obtain definite expressions for the dilaton self-couplings
once the parameters m and f are fixed. We find that the
potential is

V (χ̄) =
1

2
m2χ̄2 +

λ

3!

m2

f
χ̄3 + · · · , (14)

where m2 ) f2 is proportional to the small symmetry
breaking parameter: m2/f2 ∝ λO for λO ) 1 (in units of

(e.g. Goldberger, Grinstein, Skiba)

(bIR − bUV )
α

8π

χ

f
G2

µν



•But is it reasonable to assume light dilaton?

•Argument against: if conformality broken by strong
dynamics, at the breaking β and g necessarily large

•Large explicit breaking - do not expect to get a state 
well below Λ

•Argument for: in RS can have very light radion mass 
if using Goldberger-Wise stabilization mechanism

(Holdom, Terning ’87; Contino, Pomarol, Rattazzi ’10; 
Kutasov ’11)

(C.C. Graesser, Kribs ’00; Rattazzi, Zaffaroni ’00)



•Classic model of SUSY breaking

•Superpotential from tree-level + instanton:

•If λ<<1 VEVs stabilized at large values

(Affleck, Dine, Seiberg ’85)

A toy example: 3-2 model

12

DYNAMICAL SUSY BREAKING

Nonperturbative SUSY techniques can be used to understand how to dynami-
cally break gauge symmetries (like the the GUT symmetry of the electroweak
gauge symmetry of the SM), however the most important application is to break
SUSY itself. We would like to have a theory of dynamical breaking so that the
SUSY breaking scale can be naturally much smaller than the Planck or string
scale without fine-tuning the ratio of these scales by hand This is what naturally
happens in asymptotically free gauge theories since the coupling at high energies
can be perturbative and slowly running and then get strong at some much lower
scale. This is just what happens in QCD: the coupling is perturbative near the
(putative) unification scale, but gets strong in the IR, producing a large but nat-
ural ratio between the GUT scale and the proton mass. This chapter will mainly
follow the excellent review in ref. [1].

12.1 A rule of thumb for SUSY breaking
A theory that has no flat directions and spontaneously breaks a continuous global
symmetry generally breaks SUSY [2,3]. This is because there must be a Nambu–
Goldstone boson (which has no interactions in the potential), and by SUSY it
must have a scalar partner (a modulus), but if there are no flat directions this is
impossible. (Unless the modulus is also a Nambu–Goldstone boson.) In the early
days people looked for theories that had no classical flat directions (assuming
that quantum corrections would not cancel the classical potential) and tried to
make them break global symmetries in the perturbative regime. This method
produced a handful of dynamical SUSY breaking theories. With duality we can
find many examples of dynamical SUSY breaking. An important twist is that
we will find that nonperturbative quantum effects can lift flat directions both at
the origin of moduli space as well as for large VEVs.

12.2 The 3-2 model
In the mid-1980s, Affleck, Dine, and Seiberg [3] found the simplest known model
of dynamical SUSY breaking. Their model has a gauge group SU(3) × SU(2)
and two global U(1) symmetries with the following chiral supermultiplets:

SU(3) SU(2) U(1) U(1)R

Q 1/3 1
L 1 −1 −3
U 1 −4/3 −8
D 1 2/3 4

. (12.1)
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We will write Q = (U,D), and denote the intrinsic scales of the two gauge groups
by Λ3 and Λ2 respectively. For Λ3 � Λ2 (i.e. when the SU(3) interactions are
much stronger than the SU(2) interactions), instantons give the standard ADS
superpotential (9.16):

Wdyn =
Λ7

3

det(QQ)
, (12.2)

which has a runaway vacuum. Adding a tree-level trilinear term to the superpo-
tential

W =
Λ7

3

det(QQ)
+ λ QD̄L , (12.3)

removes the classical flat directions and produces a stable minimum for the
potential. Since the vacuum is driven away from the point where the VEVs
vanish by the dynamical ADS potential (12.2), the global U(1) symmetries are
broken and we expect (by the rule of thumb described above) that SUSY is
broken.

The L equation of motion

∂W

∂Lα
= λ�αβQmαD

m = 0 , (12.4)

tries to set detQQ to zero since

detQQ = det
�

UQ1 UQ2

DQ1 DQ2

�

= U
m

QmαD
n
Qnβ�αβ . (12.5)

Thus, the potential cannot have a zero-energy minimum since the dynamical
term blows up at detQQ=0. Therefore, SUSY is indeed broken.

We can crudely estimate the vacuum energy for by taking all the VEVs to be
of order φ. For φ � Λ3 and λ � 1 we are in a perturbative regime. The potential
is then given by

V = |∂W

∂Q
|2 + |∂W

∂U
|2 + |∂W

∂D
|2 + |∂W

∂L
|2 (12.6)

≈ Λ14
3

φ10
+ λ

Λ7
3

φ3
+ λ2φ4 , (12.7)

where in the last line we have dropped the numerical factors since we are only
interested in the scaling behavior of the solution. This potential has a minimum
near

�φ� ≈ Λ3

λ1/7
, (12.8)
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• Dilaton mass:

•When weakly coupled: non-perturbative instanton 
effect breaks (approximate) conformality

•Mass of dilaton small compared to dynamical scale 
Λ3

•If strongly coupled λ~1 or larger - no parametric 
suppression (though Kähler potl. not calculable)

•SUSY and flat direction played a central role in 
finding a light dilaton, not expected in non-susy strong 
dynamics theories

A toy example: 3-2 model

mdil ∼ λ
12
7 Λ3



•Original RS: spontaneously broken conformality - 
exactly massless dilaton (the radion)

•Can add a small explicit breaking a la Goldberger-
Wise: radion mass remains small

• l is a small parameter...

•BUT: we have assumed that conformality 
spontaneously broken - not necessarily broken by 
strong dynamics

The RS story for the dilaton

where the integration constant C along with the radion mass m̃ is determined by the bound-
ary conditions at the brane. This way we obtain the radion mass to be

m2
radion =

4l2(2k + u)u2

3k
e−2(u+k)r0 , (6.6)

where r0 denotes the location of the brane. Note that this result is very similar to the answer
obtained from the effective theory computation using the näıve ansatz[14, 15], except for the
important difference in the power of u/k. The exact result obtained here scales as (u/k)2,
whereas the effective theory result would scale as (u/k)3/2.∗ It would be very interesting to
understand the origin of this different scaling. For this model to give the correct value of the
weak scale without reintroducing a large fine-tuning again one needs u/k ≈ 1/37, thus the
radion mass turns out to be somewhat lighter than the TeV scale. It is suppressed by the
factor lu

ke−ur0 compared to the TeV scale. Thus in this approximation mradion ∼ l
40 TeV,

which could be at least in the range of a few GeV’s. Of course, we need to emphasize that l
is not necessarily small for the stabilization mechanism to work, we took this limit only for
calculational convenience.

7 Coupling to SM fields

In this section the coupling of the radion and KK tower of φ to the TeV brane are obtained.
In particular we demonstrate that the bulk scalar field gives a small correction to the radion
kinetic term, and thus the kinetic terms obtained from the Einstein–Hilbert part of the
action dominate, justifying the results obtained using the näıve ansatz [14, 15].

In the previous section it was seen that by including the backreaction an O(TeV2) for
the radion is obtained. The wavefunction is then

F0(x, y) = e2k|y|
(

1 + l2f0(y)
)

R(x) (7.1)

where f0(y) is given by the integral of (6.5). Since the radion mass is O(TeV2), and by
assumption l2 # 1, we see by inspection that the backreaction induces a small correction
to the unperturbed wavefunction. So for the purposes of determining the coupling of the
radion to the TeV brane it is sufficient to include only the unperturbed wavefunction, namely
F (x, y) = e2k|y|R(x). Then a straightforward calculation gives

− M3
∫

dy
√

gR ⊃ 6M3(∂R)2
∫

e−2Ae4k|y| =
6M3

k
(e2kr0 − 1)(∂R)2 (7.2)

So the normalized radion r(x) is R(x) = r(x)e−kr0/
√

6MP l, since M3/k = M2
P l/2. This

implies a coupling to the TeV brane fields which is

R(x)e2kr0

(

1 + O(l2)
)

TrTµν =
r(x)√

6MP le−kr0

TrTµν

(

1 + O(l2)
)

, (7.3)

∗We thank Jim Cline for these observations.
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(C.C., Graesser, Kribs)



•An RS-type model for strong dynamics: just have a 
scalar field that is very flat in bulk and then suddenly 
blows up (over a very narrow range to limit region 
where β≠0)

• Can solve for radion mass numerically: 

The RS story for the dilaton

2 4 6 8 10

�2.�10�13

�1.�10�13

1.�10�13

2.�10�13

3.�10�13

PRELIMINARY

Zeroes mass of modes 
in units of KK scale

No light state



•While RS does have a light radion, it does not seem 
to be dual of a conformal breaking due to strong 
dynamics like in technicolor

•More realistic holographic duals of technicolor-like 
theories don’t seem to have a light state (as expected 
long time ago)

•What exactly is RS dual of? (seems more like a 
theory with a flat direction...)

Moral of the RS story



Summary
•Hint for  125 GeV higgs(-like particle), no hint  for other 
non-standard physics 

•Implications for BSM models:

1. SUSY: 125 GeV problematic for MSSM, also why no 
MET? Possible solution: composite Higgs, 3rd gen. 
NMSSM. Concrete model based on Seiberg duality. 

2. Strong dynamics: need light composite Higgs. If 
couplings deviate: might need other lighter resonances 
below cutoff. Concrete example: spin-1 triplet at 1 TeV 
can help unitarity, allowed by LHC. 

3. Techni-dilaton: unlikely to be at 125 GeV.


