What is the alternative to the Higgs?

Csaba Csáki (Cornell)

Blois 2012

There does seem to be a Higgs-like particle at 125 GeV

I will make the assumption that this real

Alternatives to the STANDARD Higgs

Csaba Csáki (Cornell)

Blois 2012

Outline

- 1. Higgs in SUSY
- 2. Composite Higgs and $h \rightarrow \gamma \gamma$
- 3. Higgs or techni-dilaton?

<u>1. Higgs and SUSY:</u> <u>A natural SUSY model via stop and higgs</u> <u>compositeness</u>

SUSY has two problems

1. Why no MET observed?

2. How can Higgs be 125 GeV (little hierarchy)

<u>Natural SUSY</u>

•A possible way of accommodating SUSY with MET searches (other possibility is PRV, eg. MFV SUSY)

- •First two generation squarks and gluino quite heavy
- •LH stop, sbottom, RH stop light. σ_{SUSY} small.
- Also solves flavor issue
- Originally suggested by Cohen, Kaplan, Nelson in '96 as ``more minimal SSM"
- •Only particles needed to solve hierarchy problem are right

The bounds on natural SUSY: naturalness

(Papucci, Ruderman, Weiler '11)

Below TeV scale

Above TeV scale

Gluino and Winos not as clear-cut: gluino could be heavier, while wino definitely below TeV...

The bounds on natural SUSY: naturalness

(Papucci, Ruderman, Weiler '11)

Below TeV scale

Above TeV scale

Gluino and Winos not as clear-cut: gluino could be heavier, while wino definitely below TeV...

The bounds on natural SUSY: LHC

(Papucci, Ruderman, Weiler '11)

•Simplified model: only left handed stop/sbottom, right handed stop decaying to higgsinos:

•Bounds from ~ 1 fb⁻¹ data:

The bounds on natural SUSY: LHC

(Papucci, Ruderman, Weiler '11)

•Simplified model: only left handed stop/sbottom, right handed stop decaying to higgsinos:

•Estimate for bounds from 10 fb⁻¹ :

The bounds on natural SUSY: LHC

(Papucci, Ruderman, Weiler '11)

•Simplified model: only left handed stop/sbottom, right handed stop decaying to binos or gravitinos:

•Bounds from ~ 1 fb⁻¹ data, no bound on RH stop.

The other problem with SUSY: Little hierarchy

•Higgs mass: fixed by quartic coupling

$$V(H) = \lambda ||H|^2 - \frac{v^2}{2})^2$$

•SUSY: quartic coupling = gauge coupling (which sets W,Z mass)

•Leading result: $m_h \leq M_Z$

•But we know from LEP $m_h \geq 114 \,\mathrm{GeV}$

•LHC: $m_h \sim 125 {\rm GeV}$

Very hard to overcome this in MSSM

•Need to assume that loop correction to quartic is large: $2m^2\lambda^2$

$$m_{Higgs}^2 = M_Z^2 + \frac{3m_t^2\lambda_t^2}{4\pi^2}\log\frac{m_{\tilde{t}}}{m_t}$$

Need large stop-top splitting

 But large loops and splittings are exactly what we are trying to avoid in SUSY

Back to some fine tuning

$$M_Z^2 \sim -2m_{H_u}^2$$
 vs.

$$m_{H_u}^2 = m_0^2 - \frac{3\lambda_t^2 m_{\tilde{t}}^2}{4\pi^2} \log \frac{\Lambda_{UV}^2}{m_{\tilde{t}}^2}$$

Implies <1% tuning generically</p>

MSSM naturalness for 125 GeV Higgs

(Hall, Pinner, Ruderman, '11)

•In MSSM very hard to get 125 GeV with light stop:

Light stops from compositeness (and a 125 GeV Higgs) (CC, Shirman, Terning '11

CC, Randall, Terning '12)

•Idea: some fields composite, others not

 Additional strong confining interaction producing massless composites - can be described via "Seiberg duality"

•Have a confining gauge group (in this case SU(4)) that produces massless composite mesons, gauge fields and quarks

•Identify some of these composites with the MSSM Higgs, left handed top/stop, sbottom, right handed stop, EW gauge fields/ gauginos: the fields needed for natural SUSY

•Important ingredient: Higgs sector will NATURALLY contain a singlet and NMSSM-type superpotential: needed to lift Higgs

The Minimal Composite Supersymmetric SM(MCSSM)(CC, Shirman, Terning)

(CC, Shirman, Terning '11 CC, Randall, Terning '12)

•Electric theory SU(4) with 6 flavors

$$W_{tree} = \mu_{\mathcal{F}}(\mathcal{Q}_4\bar{\mathcal{Q}}_4 + \mathcal{Q}_5\bar{\mathcal{Q}}_5) + \mu_f\mathcal{Q}_6\bar{\mathcal{Q}}_6$$

•Becomes strongly coupled at ~ 10 TeV, produces massless composites

	$SU(2)_{\rm mag}$	$SU(6)_1$	$SU(6)_2$	$U(1)_V$	$U(1)_R$
q			1	2	$\frac{2}{3}$
\bar{q}		1		-2	$\frac{2}{3}$
M	1			0	$\frac{2}{3}$

 $W_{dyn} = y \, \bar{q} M q$.

Where is the standard model in the MCSSM?

(CC, Shirman, Terning '11 CC, Randall, Terning '12)

•Two SU(2) groups, one of them ``magnetic" composite SU(2)

•Other elementary embedded into flavor symmetry

 $SU(6)_1 \supset SU(3)_c \times SU(2)_{\rm el} \times U(1)_Y$ $SU(6)_2 \supset SU(3)_X \times SU(2)_{\rm el} \times U(1)_Y$

•Composites:

$$q = Q_3, \mathcal{H}, H_d \qquad M = \begin{pmatrix} V & U & \bar{t} \\ E & G + P & \phi_u \\ R & \phi_d & S \end{pmatrix}$$

•Relevant superpotential:

 $W \supset yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + yH_u\mathcal{H}\phi_u + yH_d\bar{\mathcal{H}}\phi_d$

(CC, Randall, Terning '12, CC, Shirman, Terning '11)

•The relevant part of the Higgs potential:

$$V = y^{2}|H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

(CC, Shirman, Terning '11 CC, Randall, Terning '12)

•The relevant part of the Higgs potential:

$$V = y^{2}|H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

usual SUSY quartic

•The relevant part of the Higgs potential:

(CC, Shirman, Terning '11 CC, Randall, Terning '12)

$$V = y^{2}H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

• additional NMSSM-like quartic due to confining dynamics does not have to be small, can be > 1. tan β does NOT have to be large, in fact can be < 1

•S singlet a composite, other parameters soft breaking terms that can be estimated from strong dynamics in SUSY

•f will drive EWSB (different that MSSM, get EWSB w/o SUSY breaking). Good: higgs mass not related to Z mass, bad: why f~v?

(CC, Shirman, Terning '11 CC, Randall, Terning '12)

•The EWSB vacuum:
$$\langle H_u^0 \rangle = \frac{v}{\sqrt{2}} \sin \beta$$
, $\langle H_d^0 \rangle = \frac{v}{\sqrt{2}} \cos \beta$

 $\langle S \rangle = -\frac{\sqrt{2} (Av^2 \sin \beta \cos \beta + 2T)}{2M_s^2 + y^2 v^2}$ will generate effective $\mu = y < S >$

•At minimum
$$\frac{y^2v^2}{2} = \frac{2(y^2f^2 - AS)}{\sin 2\beta} - 2y^2S^2 - m_{H_u}^2 - m_{H_d}^2$$

•Fine tuning about $\frac{y^2v^2}{2m_{H_u}^2}$ be light...

$$\frac{1}{T_u}$$
 better than in MSSM, and stop can

•Bound on gluino mass: don't want to lift stop too much

 $\Delta m_{\tilde{t}} \sim \frac{32}{3} \frac{\alpha_s}{4\pi} |M_3|^2 \log\left(\frac{\Lambda}{\text{TeV}}\right)$ will keep gluino below 1.5 TeV to have 400 GeV stop natural

The SUSY breaking hierarchy:

(CC, Randall, Terning '12)

•If strong dynamics close to conformal (depends on details of the SU(4) theory, in this case means $F \ge 6$)

•Assuming that soft breaking generated above confinement scale Λ

•Elementary fields (first two generation squarks, sleptons, gluino get mass $m_{el} \sim M_3 \sim {\rm few} \cdot {\rm TeV}$

•Composites get **suppressed** soft breaking masses

$$m_{comp} \sim \frac{m_{el}^2}{\Lambda} \sim M_1 \sim M_2 \sim A \sim \text{few} \cdot 100 \text{ GeV}$$

•For Λ~5-10 TeV composites in few 100 GeV range

The input parameters

parameter	spectrum 1	spectrum 2	spectrum 3	spectrum 4
$\tan\beta$	0.85	1.3	1.0	0.97
A	$300 { m GeV}$	$540 { m GeV}$	$350~{ m GeV}$	$400 {\rm GeV}$
T	$4 \times 10^7 \mathrm{GeV^3}$	$1.4 \times 10^7 \mathrm{GeV^3}$	$3.35 \times 10^7 \text{ GeV}^3$	$6 \times 10^6 \mathrm{GeV^3}$
$m_{Q_{33}}$	$500 { m GeV}$	$500 { m GeV}$	$350~{ m GeV}$	$400 { m GeV}$
$m_{U_{33}}$	$250 { m GeV}$	$350 { m GeV}$	$350~{ m GeV}$	$400 { m GeV}$
M_1	$600 { m GeV}$	$700 { m GeV}$	$85 { m GeV}$	$600 { m GeV}$
M_2	$800 { m GeV}$	$800 { m GeV}$	$282 { m GeV}$	$1200 { m GeV}$
m_S	$400 {\rm GeV}$	$350 { m GeV}$	$350~{ m GeV}$	$100 { m GeV}$
M_{Sf}	$0 { m GeV}$	$-350 \mathrm{GeV}$	$0 { m GeV}$	$0 { m GeV}$
f	$100 { m GeV}$	$100 { m GeV}$	$293 \mathrm{GeV}$	$100 { m GeV}$

•Other parameters determined from minimizing Higgs potl

•Augmented NMSSMtools to implement different Higgs potential, calculate spectra, decay rates. Looked at four characteristic examples with very light stops (clearly can make them somewhat heavier if needed)

(CC, Randall, Terning '12)

1. Stealth stop

H_1	$125 \mathrm{GeV}$	$ ilde{b}_1$	$499 \mathrm{GeV}$
$ $ \tilde{t}_1	188 GeV	A_2	$509 \mathrm{GeV}$
N_1	$216 \mathrm{GeV}$	H_3	$530 \mathrm{GeV}$
H^{\pm}	$307 \mathrm{GeV}$	\tilde{t}_2	$580 \mathrm{GeV}$
H_2	326 GeV	N_3	602 GeV
A_1	$368 \mathrm{GeV}$	N_4	$635 \mathrm{GeV}$
C_1	$406 \mathrm{GeV}$	N_5	$805 \mathrm{GeV}$
N_2	426 GeV	C_2	$876 \mathrm{GeV}$

- Stop almost degenerate with topFirst neutralino close by
- •Heavier stop, sbottom ~ 500 GeV
- Other fields over 1 TeV

(CC, Randall, Terning '12)

- Stop decays to top + gravitino not much missing ET. σ~15 pb, 10% of ttbar
- •Need precise σ_{top}
- Next stop, sbottom ~10 fb
- •Sbottom: ttWW
- •Stop2: ttZZ, ttbbW*W*
- Could have displaced top vertex

(CC, Randall, Terning '12)

2. Stop NLSP with heavier N1

H_1	$125 \mathrm{GeV}$	C_1	$628 \mathrm{GeV}$
$ $ \tilde{t}_1	$210 \mathrm{GeV}$	N_2	$651 \mathrm{GeV}$
N_1	$429 \mathrm{GeV}$	H_3	$667 \mathrm{GeV}$
$ \tilde{b}_1$	$501 \mathrm{GeV}$	N_3	$700 \mathrm{GeV}$
A_1	$572 \mathrm{GeV}$	A_2	$720 \mathrm{GeV}$
\tilde{t}_2	$621 \mathrm{GeV}$	N_4	$724 \mathrm{GeV}$
H^{\pm}	$626 \mathrm{GeV}$	N_5	806 GeV
H_2	$627 \mathrm{GeV}$	C_2	881 GeV

- Stop somewhat heavier, still close to t
 First neutralino heavier (should be 429 GeV)
- •Heavier stop, sbottom ~ 500 GeV

(CC, Randall, Terning '12)

2. Stop NLSP with heavier N1

$$\begin{split} \tilde{t}_1 &\to t + LSP & 100\% \\ N_1 &\to t + \tilde{t}^* & 50\% \\ N_1 &\to \bar{t} + \tilde{t} & 50\% \\ \tilde{b}_1 &\to \tilde{t}_1 + W^- & 100\% \\ \tilde{t}_2 &\to \tilde{t}_1 + Z & 78\% \\ \tilde{t}_2 &\to \tilde{b}_1 + W^+ & 14\% \\ \tilde{t}_2 &\to \tilde{t}_1 + H_1 & 8\% \end{split}$$

Stop decays to top + gravitino - not much missing ET. σ~8 pb, 5% of ttbar
Need even more precise σ_{top}
N₁→t+stop, tttt final states, still small missing E.
Sbottom: ttWW
Stop2: ttZZ, ttWWWW

(CC, Randall, Terning '12)

3. Minimal gauge mediation

N_1	$88 \mathrm{GeV}$	C_2	415 GeV
H_1	$128 \mathrm{GeV}$	N_4	434 GeV
$ $ \tilde{t}_1	191 GeV	H_2	473 GeV
N_2	$192 \mathrm{GeV}$	\tilde{t}_2	517 GeV
N_3	291 GeV	N_5	613 GeV
C_1	327 GeV	H^{\pm}	650 GeV
$ \tilde{b}_1$	$350 \mathrm{GeV}$	H_3	$657 \mathrm{GeV}$
A_1	412 GeV	A_2	702 GeV

Neutralino LSP or NLSP, missing energy, but reduced σ
Stop still pretty light close to top

3. Minimal gauge mediation

	(CC, Randall,	Terning
\tilde{t}_1	$\rightarrow N_1^+ + b + W^+$	100%
\tilde{b}_1	$\rightarrow N_3 + b$	80%
\tilde{b}_1	$\rightarrow \tilde{t}_1 + W^-$	95%
\tilde{b}_1	$\rightarrow N_3 + b$	4%
\tilde{b}_1	$\rightarrow N_1 + b$	1%
\tilde{t}_2	$\rightarrow \tilde{t}_1 + Z$	42%
\tilde{t}_2	$\rightarrow \tilde{b}_1 + W^+$	31%
\tilde{t}_2	$\rightarrow N_2 + t$	10%
\tilde{t}_2	$\rightarrow C_2^+ + b$	8%
\tilde{t}_2	$\rightarrow N_1 + t$	4%
\tilde{t}_2	$\rightarrow C_1^+ + b$	3%
\tilde{t}_2	$\rightarrow N_3 + t$	2%

'12)

If gauge mediation gravitino LSP
N₁→γ+gravitino, missing ET
stop→t^{*}+N₁
stop2→stop1 Z,sbottom W,N t, C b,
j+MET, j+t+MET, j+W/Z+MET or photons, also longer cascades

(CC, Randall, Terning '12)

4. High duality scale

H_1	$126 \mathrm{GeV}$	N_2	$348 \mathrm{GeV}$
A_1	$190 { m GeV}$	H_3	$353 \mathrm{GeV}$
N_1	$217 \mathrm{GeV}$	$ \tilde{b}_1$	$400 \mathrm{GeV}$
\tilde{t}_1	284 GeV	A_2	$460 \mathrm{GeV}$
H_2	$339 \mathrm{GeV}$	\tilde{t}_2	$546 \mathrm{GeV}$
H^{\pm}	$341 \mathrm{GeV}$	N_3	$559 \mathrm{GeV}$
C_1	$341 \mathrm{GeV}$	N_4	602 GeV

Neutralino LSP or NLSP

•N₁ over 200 GeV, stop around 300

(CC, Randall, Terning '12)

4. High duality scale

 $\tilde{t}_1 \rightarrow N_1 + c \qquad 99\%$ $\begin{aligned} \tilde{t}_1 &\to N_1 + u & 1\% \\ \tilde{b}_1 &\to \tilde{t}_1 + W^- & 100\% \end{aligned}$ $\tilde{t}_2 \rightarrow \tilde{t}_1 + Z = 28\%$ $\tilde{t}_2 \rightarrow C_1^+ + b = 24\%$ $\tilde{t}_2 \rightarrow \tilde{b}_1 + W^+ \quad 20\%$ $\tilde{t}_2 \rightarrow N_2 + t \quad 15\%$ $\tilde{t}_2 \rightarrow N_2 + t \qquad 14\%$

- •stop \rightarrow N₁+C : $H_2^{H_3}$ H^{\pm} $N_2_{C_1^{\pm}}$ •stop2 \rightarrow stop1+Z, C+b, sbottom+W,N+t sbottom→stop1+W
 - •Final states: j+MET, j+t+MET, j+W/Z +MET
 - Traditional SUSY at reduced rates

Higgs branchings

SM fields	spectrum 1	spectrum 2	spectrum 3	spectrum 4
$\gamma\gamma$	1.02	1.02	0.95	0.85
gluons	0.65	0.83	0.82	0.73
WW, ZZ	0.89	0.96	0.89	0.74
$u ar{u}$	0.72	1.0	0.89	0.72
d ar d	1.01	0.91	0.89	0.77

Not so different from SM: plausible that LHC Higgs results can be reproduced

2. Composite Higgs and $\rho^{\pm,0}$: enhancement of $h \rightarrow \gamma \gamma$?

Strong dynamics

(Bellazzini, C.C., Hubisz, Serra, Terning '12)

Produces light higgs

•Additional resonances at cutoff Λ

 Higgs couplings could be different from SM values •If higgs couplings very different from SM: unitarity may break down BEFORE cutoff scale

- •Need additional light states to maintain unitarity to Λ
- •Assume additional spin-1 triplet $\rho^{\pm,0}$
- •Simplified model: assume custodial symmetry
- Pion Lagrangian for longi modes of W,Z from CCWZ
- •Assume $\rho^{\pm,0}$ triplet of SU(2)_C

The moose for the simplest model:

- •Assume axial vectors integrated out
- •Just use lowest states

•The Higgs Lagrangian:

$$\mathcal{L}_{\text{eff}}^{(h)} = a \left(\frac{2m_W^2}{v} W_{\mu}^+ W_{\mu}^- + \frac{m_Z^2}{v} Z_{\mu}^2 \right) h + c_f \left(\frac{m_f}{v} \bar{f} f \right) h + c_\gamma \frac{\alpha}{\pi v} F_{\mu\nu}^2 h + c_g \frac{\alpha_s}{12\pi v} G_{\mu\nu}^2 h$$

- a parametrizes deviation of GB coupling unitarity
- c_f parametrizes fermion coupling unitarity in
 WW→ff channel

•The vector Lagrangian:

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{(\rho)} &= c_{\rho} \frac{m_{\rho}^{2}}{v} \left(\rho_{\mu}^{0\,2} + 2\rho_{\mu}^{+} \rho_{\mu}^{-} \right) h + c_{\rho Z} \left(\frac{m_{Z}^{2}}{v} Z_{\mu} \rho_{\mu}^{0} \right) h + c_{\rho W} \left(\frac{m_{W}^{2}}{v} W_{\mu}^{+} \rho_{\mu}^{-} + h.c. \right) h \\ &+ g_{\rho^{0}WW} \left(\partial_{\mu} W_{\nu}^{+} W_{\mu}^{-} - \partial_{\mu} W_{\nu}^{-} W_{\mu}^{+} \right) \rho_{\nu}^{0} + g_{\rho WZ} \left[\left(\partial_{\mu} W_{\nu}^{-} Z_{\mu} - \partial_{\mu} Z_{\nu} W_{\mu}^{-} \right) \rho^{+\nu} + h.c. \right] \\ &+ \ldots + g_{\rho^{0}f} \left(\bar{f} \gamma_{\mu} T_{f}^{3} f \right) \rho_{\mu}^{0} + g_{\rho^{\pm}f} \left(\bar{f} \gamma_{\mu} T^{\mp} f \right) \rho_{\mu}^{\pm} \end{aligned}$$

• pVV interactions generated from p-V mixing~ $\frac{g}{2g_{\rho}}$

$$g_{\rho WW} = -g \frac{a}{2} \frac{m_W}{m_\rho} = -g \frac{g}{4g_\rho} \qquad \qquad g_{\rho WZ} = -g \frac{a}{2} \frac{m_Z}{m_\rho} = -g \frac{\sqrt{g^2 + g'^2}}{4g_\rho}$$

- The parameters:
- 1. a: Higgs coupling suppression
- 2. m_{ρ} : the vector mass
- 3. c_{ρ} : the pph coupling
- 4. g_{ρ} : the ρ self-coupling

$$g_{\rho WW} = -g \frac{a}{2} \frac{m_W}{m_\rho} = -g \frac{g}{4g_\rho} \qquad \qquad g_{\rho WZ} = -g \frac{a}{2} \frac{m_Z}{m_\rho} = -g \frac{\sqrt{g^2 + g'^2}}{4g_\rho}$$

- The parameters:
- 1. a: Higgs coupling suppression
- **2.** m_{ρ}: the vector mass / from CCWZ $a_{\rho}^{2} \frac{v^{2}}{2} \left(g_{\rho} \rho_{\mu}^{a} E_{\mu}^{a}\right)^{2}$
- C_ρ: the pph coupling

- $m_{\rho} = a_{\rho}g_{\rho}v$
- 4. g_{ρ} : the ρ self-coupling / g_{ρ} expressed in terms of a_{ρ} and m_{ρ} and unitarity sum rule $a^2 + 3a_{\rho}^2/4 = 1$ applied

Unitarity

Elastic scattering

$$A(s,t,u)^{(\pi\pi)} = \frac{s}{v^2} - \frac{a_{\rho}^2}{4v^2} \left[3s + m_{\rho}^2 \left(\frac{s-u}{t-m_{\rho}^2} + \frac{s-t}{u-m_{\rho}^2} \right) \right] - \frac{a^2}{v^2} \left[\frac{s^2}{s-m_h^2} \right]$$

•Growing terms canceled if sum rule

$$a^2 + \frac{3}{4}a_{\rho}^2 = 1$$

•How close do I have to be?

Unitarity

•Will impose sum rule and eliminate one parameter $a^2 + \frac{3}{4}a_\rho^2 = 1$

•Region allowed from elastic unitarity:

•Sum rules satisfied in explicit model (eg. gaugephobic higgs)

<u>Unitarity</u>

•Inelastic channels $\pi\pi \rightarrow \rho\rho$

$$A(s,t,u)^{(\rho_L\rho_L)} = \frac{s}{v^2} \left(a c_\rho - \frac{1}{4} \right) a_\rho^2 + \cdots$$
$$B(s,t,u)^{(\rho_L\rho_L)} = \frac{s}{4v^2} (a_\rho^2 - 1) + \frac{t}{4v^2} (a_\rho^2 - 2) + \cdots$$

$$A(s,t,u)^{(hh)} = \frac{s}{v^2}(a^2 - b) + \cdots$$

$$A(s, t, u)^{(\rho_L h)} = i \frac{t - u}{2v^2} (a - c_\rho) a_\rho$$

- •Will assume $b = a^2$ $c_{\rho} = a$
- •Other channels require additional heavy states, could be close to cutoff (axial vector, heavy P odd H,...)

Effect of ρ on $h \rightarrow \gamma \gamma$

Loops of p will contribute just like W loops

$$\Gamma/\Gamma_{\rm SM}(h \to \gamma \gamma) \simeq \left[1 + \frac{9}{8}c_{\rho} + \frac{9}{7}(a-1) - \frac{2}{7}(c_t-1)\right]^2$$

Suppression of higgs coupling can be compensated

<u>Effect of ρ on h→γγ</u>

•The effect on σ Br:

$$\frac{\sigma}{\sigma_{\rm SM}}(gg \to h) \simeq \frac{\sigma}{\sigma_{\rm SM}}(gg \to ht\bar{t}) = c_t^2 \qquad \frac{\sigma}{\sigma_{\rm SM}}(q\bar{q} \to hjj) = \frac{\sigma}{\sigma_{\rm SM}}(q\bar{q} \to hW) = a^2$$
$$\frac{BR}{BR_{\rm SM}}(h \to \gamma\gamma) \simeq \frac{\left[1 + \frac{9}{8}c_\rho + \frac{9}{7}(a-1) - \frac{2}{7}(c_t-1)\right]^2}{c_b^2 BR_{\rm SM}(h \to b\bar{b}) + a^2 BR_{\rm SM}(h \to VV^*) + \dots}$$

 Along unitarity sum rule (and where a not too small) mostly enhanced

Constraints on p: EWP

Electroweak precision

Tree-level UV contribution

And loop IR contribution due to modified Higgs

$$\delta \hat{S}_{\rm IR} = \frac{g^2}{96\pi^2} \left[\left(1 - a^2\right) \log\left(\frac{\Lambda}{m_h}\right) + \log\left(\frac{m_h}{m_h(\rm ref)}\right) \right]$$
$$\delta \hat{T}_{\rm IR} = -\frac{3g'^2}{32\pi^2} \left[\left(1 - a^2\right) \log\left(\frac{\Lambda}{m_h}\right) + \log\left(\frac{m_h}{m_h(\rm ref)}\right) \right]$$

Charged p

•Production cross section (mainly DY):

•Charged p

•Decay depends on coupling to fermions, diboson $\rho \rightarrow WZ$ always significant

•Charged $\rho \rightarrow WZ \rightarrow 3I + v CMS W'$ diboson search

•Large region allowed for 700 GeV < m_{ρ} <2 TeV

•Neutral ρ: WW decay should be searchable

Higgs→WW search very hard to reinterpret, highly optimized to higgs (DY production vs. VBF/gluon)

•Production σ ~0.05 pb too small for boosted/nonboosted ttbar resonance searches.

3. Techni-dilaton at 125 GeV?

(Bellazzini, C.C., Hubisz, Serra, Terning in progress)

An optimistic picture:

Strong dynamics almost conformal

•Gets strong, produces condensate $\langle \mathcal{O} \rangle \sim v$

Breaks EWS and conformality

Produces dilaton with f~v

- •Coupling to fields: $\mathcal{L}_{\chi} = \frac{1}{2} \partial_{\mu} \bar{\chi} \partial^{\mu} \bar{\chi} + \frac{\bar{\chi}}{f} T^{\mu}{}_{\mu} + \cdots,$
- If f~v about ``right" coupling to massive fields

$$\mathcal{L}_{\chi,SM} = \left(\frac{2\bar{\chi}}{f} + \frac{\bar{\chi}^2}{f^2}\right) \left[m_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2}m_Z^2 Z_{\mu} Z^{\mu}\right] + \frac{\bar{\chi}}{f} \sum_{\psi} m_{\psi} \bar{\psi} \psi,$$

(e.g. Goldberger, Grinstein, Skiba)

- •Coupling to gluon, photon mostly from trace anomaly $(b^{IR} b^{UV}) \frac{\alpha}{8\pi} \frac{\chi}{f} G_{\mu\nu}^2$
- b^{IR}-b^{UV} is the same form as in SM, can get arbitrarily close (or far) from SM answer by playing with the CFT matter content

•But is it reasonable to assume light dilaton?

•Argument against: if conformality broken by strong dynamics, at the breaking β and g necessarily large

Large explicit breaking - do not expect to get a state
 well below Λ (Holdom, Terning '87; Contino, Pomarol, Rattazzi '10; Kutasov '11)

•Argument for: in RS can have very light radion mass if using Goldberger-Wise stabilization mechanism (C.C. Graesser, Kribs '00; Rattazzi, Zaffaroni '00)

A toy example: 3-2 model

•Classic model of SUSY breaking (Affleck, Dine, Seiberg '85)

•Superpotential from tree-level + instanton:

$$W = \frac{\Lambda_3^7}{\det(\overline{Q}Q)} + \lambda \, Q\bar{D}L \; ,$$

•If $\lambda <<1$ VEVs stabilized at large values

$$\begin{split} \langle \phi \rangle \approx \frac{\Lambda_3}{\lambda^{1/7}} & V = |\frac{\partial W}{\partial Q}|^2 + |\frac{\partial W}{\partial \overline{U}}|^2 + |\frac{\partial W}{\partial \overline{D}}|^2 + |\frac{\partial W}{\partial L}|^2 \\ \approx \frac{\Lambda_3^{14}}{\phi^{10}} + \lambda \frac{\Lambda_3^7}{\phi^3} + \lambda^2 \phi^4 \ , \end{split}$$

A toy example: 3-2 model

• Dilaton mass: $m_{dil} \sim \lambda^{\frac{12}{7}} \Lambda_3$

•When weakly coupled: non-perturbative instanton effect breaks (approximate) conformality

•Mass of dilaton small compared to dynamical scale Λ_3

•If strongly coupled λ ~1 or larger - no parametric suppression (though Kähler potl. not calculable)

•SUSY and flat direction played a central role in finding a light dilaton, not expected in non-susy strong dynamics theories

The RS story for the dilaton

•Original RS: spontaneously broken conformality exactly massless dilaton (the radion)

•Can add a small explicit breaking a la Goldberger-Wise: radion mass remains small (C.C., Graesser, Kribs)

$$m_{radion}^2 = \frac{4l^2(2k+u)u^2}{3k}e^{-2(u+k)r_0}$$

• I is a small parameter...

•BUT: we have assumed that conformality spontaneously broken - not necessarily broken by strong dynamics

The RS story for the dilaton

•An RS-type model for strong dynamics: just have a scalar field that is very flat in bulk and then suddenly blows up (over a very narrow range to limit region where $\beta \neq 0$)

• Can solve for radion mass numerically:

Zeroes mass of modes in units of KK scale

No light state

Moral of the RS story

•While RS does have a light radion, it does not seem to be dual of a conformal breaking due to strong dynamics like in technicolor

•More realistic holographic duals of technicolor-like theories don't seem to have a light state (as expected long time ago)

•What exactly is RS dual of? (seems more like a theory with a flat direction...)

<u>Summary</u>

•Hint for 125 GeV higgs(-like particle), no hint for other non-standard physics

•Implications for BSM models:

1. **SUSY**: 125 GeV problematic for MSSM, also why no MET? Possible solution: composite Higgs, 3rd gen. NMSSM. Concrete model based on Seiberg duality.

2. **Strong dynamics**: need light composite Higgs. If couplings deviate: might need other lighter resonances below cutoff. Concrete example: spin-1 triplet at 1 TeV can help unitarity, allowed by LHC.

3. Techni-dilaton: unlikely to be at 125 GeV.