STERILE NEUTRINOS: Baryogenesis, dark matter, primordial magnetic fields...

Oleg RUCHAYSKIY

24th Rencontres de Blois May 31, 2012

Oleg Ruchayskiy STERILE NEUTRINOS : STATUS AND MOTIVATIONS

Future?

- SM Higgs gives a good fit to data.
 Reduced gg → h and enhanced h → γγ improves the fit.
 Too good: is this just over-fitting fluctuations?
- SUSY: at the weak scale, or one loop above, or much above.
- $m_h \approx 125 \text{ GeV}$ corresponds to $\lambda = 0$ at the Planck scale? Almost, but NO. λ gets slightly negative and the SM vacuum is meta-stable.

Implications for European Strategy for Particle Physics: The Higgs could be the last particle. Carpe diem.

From the talk of A. Strumia at CERN workshops "Implication of the latest LHC results for new physics"

Beyond the Standard Model

BUT! already now we know a number of observational **beyond the Standard Model phenomena**:

- → Neutrino oscillations: transition between neutrinos of different flavours $(\nu_e, \nu_\mu, \nu_\tau)$ means violation of lepton flavour symmetries (but not total lepton number!)
- → existence of dark matter (why observed gravity of galaxies and clusters is so strong?)
- \rightarrow the **absence of anti-matter** in the Universe
- → (**Probably**) inflation (homogeneity of the observed Universe seem to require correlated initial conditions for causally non-connected regions)
- → (Maybe) dark energy (If it will be shown that accelerated expansion of the Universe is caused not by a small cosmological constant, but by some other unknown substance – what is this substance?)

What should we do with **beyond-the-Standard-Model problems** if the "nightmare scenario" becomes true?

Neutrino oscillations and sterile neutrinos

■ Right-chiral neutrinos N_I carry no charge under the Standard Model interactions \Rightarrow sterile neutrinos

$$\mathcal{L}_{ ext{see-saw}} = i ar{N} oldsymbol{\partial} N + M_D ar{
u} N + rac{M}{2} ar{N}^c N$$

- **Dirac** mass term: $(M_D)_{\alpha I} = \left\langle \text{Higgs} \right\rangle F_{\alpha I}$
- Two mass differences mean that there are at least two sterile neutrinos
- Neutrino masses are given by see-saw formula:

Neutrino mass matrix
$$= -M_{\text{Dirac}} \frac{1}{M_{\text{Majorana}}} M_{\text{Dirac}}^{T}$$

Scale of sterile neutrino masses

See the next talk by Pilar Hernandez

Neutrino Minimal Standard Model

- Alternative choice: make the masses of sterile neutrinos of the same order as those of quarks and leptons (keV–GeV) — Neutrino Minimal Standard Model (vMSM for short)
- The ν MSM solves several beyond the Standard Model problems and provides a complete cosmic history from inflation till today (2005)

Asaka & Shaposhnikov (2005) and many subsequent works

- \checkmark ... explains neutrino oscillations
 - ... generates matter-antimatter asymmetry of the Universe
 - ... generates cosmic magnetic fields

Two sterile neutrinos with MeV–GeV masses

 \checkmark ... provides a dark matter particle (cold, **warm** or **mixed**)

Third sterile neutrino with keV mass

Review: Boyarsky, O.R., Shaposhnikov Ann. Rev. Nucl. Part. Sci. (2009), [0901.0011]

Sterile neutrino can be searched:

- At accelerators ("Intensity frontier experiments")
- In the spectra of galaxies and galaxy clusters ("Cosmic frontier")
- To make predictions for these searches the vMSM needs detailed early Universe computations, providing
 - correct baryon asymmetry
 - correct DM abundance
 - other early Universe signatures

All three Sakharov conditions are satisfied if neutrinos are superweakly interacting and light ($M < M_W$): Kuzmin,

B-number violation: sphalerons

CP (and C) non-conservation: phase of the CKM matrix plus additional CP phases in the Dirac mass matrix of sterile neutrinos

Out-of-equilibrium processes: no phase transition in the ν MSM for $m_H > 72$ GeV! but Yukawa couplings of sterile neutrinos are small enough to keep them out of thermal equilibrium at $T \sim (2005)$ 100 GeV

Rubakov,

(1985)

Farrar &

(1994)

(1996)

Shaposhnikov

Shaposhnikov

Kajantie et al.

Baryo/leptogenesis in the ν MSM

In the νMSM lepton asymmetry is **much higher** than the baryon asymmetry

Sterile neutrino dark matter

- Two sterile neutrinos of the vMSM with the masses in MeV-GeV range are responsible for neutrino oscillations
- The same particle generate baryon and lepton asymmetries of the Universe
- The third sterile neutrino is **not required** to explain neutrino oscillations \Rightarrow can couple to the usual Standard Model neutrino sector arbitrarily weakly. This is a **dark matter** particle in the ν MSM

Two sterile neutrinos determine the properties of the DM sterile

Asaka, Shaposhnikov et al. 2005-...

Oleg Ruchayskiy STERILE NEUTRINOS : STATUS AND MOTIVATIONS

neutrino (abundance, primordial velocities, etc.)

Production of sterile neutrino DM

In the presence of **lepton asymmetry** created by two other sterile Shaneutrinos oscillations become **resonant**

Sterile neutrino dark matter have

- Colder (resonant) component with $\langle p \rangle \ll T_{\nu}$)
- Warmer (non-resonant) component with $\langle p \rangle \sim 3T_{\nu}$)

Asaka, Shaposhnikov, Laine Boyarsky, **O.R** et al.

(2006-2009) Shi & Fuller

(1998)

Laine & Shaposhnikov

Signatures of sterile neutrino DM

- Sterile neutrino DM is produced relativistic in the early Universe — warm dark matter
- Erases primordial density fluctuations at scales below the free steaming scale

- Very characteristic signal: narrow line with $E_{\gamma} = \frac{1}{2}m_{\text{DM}}c^2$
- The width of the decay line due to Doppler broadening $\frac{\Delta E}{E_{\gamma}} \sim \frac{v_{\text{vir}}}{c} \sim 10^{-4} \div 10^{-3}$

Search for dark matter particles

- DM may be decaying with a cosmologically long life-time (age of the Universe or even longer). Can we detect such decay?
- Yes! if you multiply a small number (probability of decay) with a large number (typical amount of DM particles in a galaxy $\sim 10^{70}$ - 10^{100})

Signal $\propto \int \rho_{\rm DM}(r) dl$ line of sight

Expected signal from the galaxy at a particular energy

Search for dark matter particles

- DM may be decaying with a cosmologically long life-time (age of the Universe or even longer). Can we detect such decay?
- Yes! if you multiply a small number (probability of decay) with a large number (typical amount of DM particles in a galaxy $\sim 10^{70}$ - 10^{100})

Expected signal from a galaxy at a particular energy (simulation from B. Moore)

Oleg Ruchayskiy STERILE NEUTRINOS : STATUS AND MOTIVATIONS

Parameters of sterile neutrino DM

MW (HEAO-1) Boyarsky, **O.R** et al. 2005

Coma and Virgo clusters Boyarsky, O.R et al.

Bullet cluster Boyarsky, **O.R** et al. 2006

LMC+MW(XM Boyarsky, **O.R** et al. 2006

MW Riemer-Sørensen et al.; Abazajian et al.

MW (XMM) Boyarsky, **O.R** et al. 2007

M31 Watson
 et al. 2006;
 2007

Oleg Ruchayskiy

STERILE NEUTRINOS : STATUS AND MOTIVATIONS

Window of parameters of sterile neutrino DM

Asaka, Laine, Shaposhnikov

> Laine, Shaposhnikov

Window of parameters of sterile neutrino DM

Halo substructure with sterile neutrino DM

Aq-A-2 CDM halo

Aq-A-2 halo made of sterile neutrino DM (C. Frenk, T. Theuns, O.R., ...)

Simulated sterile neutrino DM halo (right) is fully compatible with the Lyman- α forest data but provides a structure of Milky way-size halo different from CDM

History of the Universe in the ν MSM

Magnetic fields in the plasma relate baryogenesis and sterile neutrino dark matter production
work in

Magnetic fields may be observable today in the intergalactic space

progress

Magnetic fields in the νMSM

Large lepton asymmetry of the ν MSM triggers instability in the Maxwell's equations and leads to the generation of large helical magnetic fields

- Magnetic fields, generated in the ν MSM below 100 GeV are:
 - Maximally helical (sign of helicity determined by the sign of baryon asymmetry)
 - Energetic (magnetic energy density can be \sim total radiation density)
- Their survival until today is a matter of complicated evolution, described by chiral magneto-hydrodynamics work in progress

The leptogenesis in the ν MSM leads to the **baryogenesis** and generation of **potentially observable** cosmological magnetic fields

O.R.+ Phys.Rev.Lett 2012 Boyarsky, O.R., Shaposhnikov [1204.3604]

How can we search for these particles?

Peak searches and fixed-target experiments

Peak searches:

- **SIN** $\pi M3$, Switzerland 1981
- KEK K3, Japan, 1982
- TRIUMF M13, Canada, 1992
- TRIUMF PIENU, Canada, 2011

Fixed-target searches:

- PS191, CERN 1984
- CHARM, CERN 1985
- NuTeV, Fermilab 1996-1997

Decay of sterile neutrinos increases Helium-4 abundance

Sterile neutrinos and $N_{\rm eff}$

Decay of sterile neutrinos affects $N_{\rm eff}$

Parameter space of sterile neutrinos

Ultimate detector

To find MeV-GeV scale sterile neutrinos responsible for oscillations (and possibly playing an important role in the early Universe) we need:

- High energy/high intensity fixed-target experiments
- **Large detector (length** \sim km)

Predictions for the nearest future

- Standard Model Higgs with the mass above $\sim 125~{\rm GeV}$ at LHC and no new physics otherwise
- Primordial spectral index $n_s = 0.96...$ correlated with the Higgs mass, measured by Planck
- Non-detection of tensor modes
- Sum of neutrino masses $\sum m_{\nu} \approx (1-2)m_{\text{atm}}$ (hard to see it until the next generation of CMB experiments)
- In the $0\nu\beta\beta$ mass $m_{\beta\beta}$ at the level 1-10 meV

Within the next decade we can:¹

- **Discover** two sterile neutrinos with the masses $\mathcal{O}(100)$ MeV \div few GeV and mass splitting $\sim m_{\rm atm}$ in "intensity frontier" experiments (NA62 in CERN, LBNE, SLHCb)
- Discover dark matter decay line with mass/lifetime consistent with the parameters of two other sterile neutrinos (the first X-ray spectrometer of the new generation will fly in 2014).
- **Detect** the matter power spectrum suppression at $k \sim 10$ h/Mpc (next round of weak lensing/Lyman- α forest experiments)
- Find the strength/correlation length of magnetic fields in voids consistent with params. of sterile neutrinos — direct observational signature of baryogenesis, 4th pillar of hot Big Bang

¹By "can" I mean "experimental technologies are available for us today"

THANK YOU FOR YOUR ATTENTION

Additional slides

- Chemical potentials of all left/right particles are in equilibrium at T < 80 TeV
- Weak corrections are proportional to the asymmetry of all fermions, running in the loops

At finite value of baryon and lepton asymmetry effective action for magnetic fields acquires a Chern-Simons term:

$$\mathcal{F}[\vec{A}] = \frac{1}{2} \int d^3x \left(\vec{B}^2 + \Pi_2 \vec{A} \cdot \vec{B} \right)$$

The Chern-Simons coefficient is given by:

$$\Pi_2 = \frac{\alpha}{2\pi} G_F \times (c_1 \text{ baryon number} + c_2 \text{ lepton numbers}) \neq 0$$

Its origin is chiral anomaly and parity-violating nature of weak interactions

Boyarsky, **O.R.**, Shaposhnikov [1204.3604]

$$\mathcal{F}[\vec{A}] = \frac{1}{2} \int d^3x \left(\vec{B}^2 + \Pi_2 \vec{A} \cdot \vec{B} \right)$$

- The unstable mode will have a form $\vec{A}(\vec{x}) = A_0 \Big(\cos(pz), \sin(pz), 0 \Big)$
- On such a configuration $\vec{B}^2 = -p\vec{A}\cdot\vec{B}$ and are homogeneous
- The effective action is unbounded from below for $p < \Pi_2$

$$\mathcal{F}[A] = \frac{1}{2} \int d^3x \left(p^2 - p\Pi_2 \right) A_0^2 < 0$$

Long-range magnetic fields will be spontaneously generated in the equilibrium

Chern-Simons term

anomaly leads to the generation of parity-odd term

$$\Pi_2(0) = \frac{\alpha}{2\pi} G_F \times (c_1 \text{ baryon number} + c_2 \text{ lepton numbers}) \neq 0$$

The unstable mode will have a form

$$\vec{A}(\vec{x}) = A_0\Big(\cos(pz), \sin(pz), 0\Big)$$

The magnetic field

$$\vec{B}(\vec{x}) = -p\vec{A}(\vec{x})$$

- is maximally helical

• On this configuration $\vec{B}^2 = p\vec{A}\cdot\vec{B}$ and are homogeneous

■ The effective action:

$$\mathcal{F}[A] = \frac{1}{2} \int d^3x \left(p^2 - p\Pi_2 \right) A_0^2 < 0$$

for $p < \Pi_2$

Abundance of large satellites

Oleg Ruchayskiy STERILE NEUTRINOS : STATUS AND MOTIVATIONS

How to measure power spectrum

Lyman- α bounds for sterile neutrinos

- Revised version of these bounds in CDM+WDM (mixed, CWDM) models demonstrates that
 - The primordial spectra are not described by free-streaming
 - There exist viable sterile neutrino DM models with the masses as Viel JCAP & PRL (2009)
 Iow as 2 keV

STERILE NEUTRINOS : STATUS AND MOTIVATIONS

Oleg Ruchayskiy

Boyarsky,

Lesgourgues,

O.R.,

Measured flux power spectrum is compared against CDM and non-CDM models

Ly- α and thermal relics Boyarsky, Lesgourgues, 16 O.R., Viel [0812.0010] $\chi^2(M_{WDM})-\chi^2(CDM)$ Credible limit 95% CL (JCAP 2009) 12 Also Viel et al. 2005-2007; 8 Seljak et al. 4 (2006) 0 1.2 1.4 1.6 1.8 2 2.2 2.4 M_{WDM} [keV]

These bounds are for thermal relics only!

Lyman- α forest and warm DM

- Previous works put bounds on free-streaming $\lambda_{FS} \lesssim 150$ kpc Viel et al. ("WDM mass" > 2.3 keV) ~ 2.3 keV
- The simplest WDM with such a free-streaming would not modify al.(2006) visible substructures:

Maccio & Fontanot (2009);

Polisensky & Ricotti (2010)

Thermal relic with exponential cut-off ~ 1 Mpc would erase too many substructures. Anything "colder" would produce enough structures to explain observed Milky Way structures

Checking DM origin of a line

Dark Matter Search Using Chandra Observations of Willman 1, and Loewenstein 8 a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Kusenko (Dec'2009)

Can the excess in the FeXXVI Ly gamma line from the Galactic Prokhorov & Center provide evidence for 17 keV sterile neutrinos?
Silk (Jan'2010

Willman 1 spectral feature excluded with high significance from archival observations of M31 and Fornax and Sculptor dSphs