SUSY confronts LHC results – LHC results confront SUSY?

Heidi Rzehak

Rencontres de Blois, 29 May 2012

Large parts of parameter space already excluded!

Is SUSY killed?

Or is SUSY only hiding?

Limits shown on previous slides are for the CMSSM:

CMSSM = (Very) Constrained MSSM

Limits for 1st, 2nd generation of squarks and gluino: strong \gtrsim 1 TeV

Still possible (not complete):

- 1st, 2nd generation of squarks and gluino: heavy
 3rd generation of squarks: relatively light
 Charginos, neutralinos and sleptons: relatively light
- Compressed SUSY spectra
- Limits also change if squarks are non-degenerate

(see A. Weiler's talk)

Limits shown on previous slides are for the CMSSM:

CMSSM = (Very) Constrained MSSM

Limits for 1st, 2nd generation of squarks and gluino: strong $\gtrsim 1 \mbox{ TeV}$

Still possible (not complete):

- 1st, 2nd generation of squarks and gluino: heavy
 3rd generation of squarks: relatively light
 Charginos, neutralinos and sleptons: relatively light
- Compressed SUSY spectra
- Limits also change if squarks are non-degenerate

(see A. Weiler's talk)

exp. limits

are being

set

Status

SUSY confronts LHC results

Heidi Rzehak

Rencontres de Blois, 29 May 2012

Hints for a SM-like Higgs boson with mass of 125 GeV:

- \rightarrow Hints for at least one (further) (B)MSSM particle
- Access mainly in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$ channel
- No significant access in $H \to WW^{(*)} \to \ell \nu \ell \nu$ channel

LHC results confront SUSY?

SUSY processes as background to $H \rightarrow WW$

[Feigl, HR, Zeppenfeld, arXiv:1205.3468]

Scenario:

• Mass hierarchy for stau, light chargino, selectron and smuon:

 $m_{ ilde{ au}_i} > m_{\chi_1^{\pm}} > m_{ ilde{ extbf{e}}_i}, \ m_{ ilde{ extbf{\mu}}_i}$

- Lightest neutralino χ_1^0 = Lightest Supersymmetric Particle
- Main decay channel

 $\chi_1^+ \to \tilde{\ell}^+ \nu, \, \ell^+ \tilde{\nu} \to \ell^+ \nu \, \chi_1^0$

- 1st, 2nd generation of squarks an gluino heavy
- 3rd generation of squarks adjusted for a \sim 125 GeV Higgs boson

Main production processes:

 $q\bar{q} \rightarrow \chi_1^+ \chi_1^- \qquad q\bar{q} \rightarrow \tilde{\ell}\tilde{\ell} \qquad q\bar{q} \rightarrow \chi_1^\pm \chi_2^0$

 $m_{\chi_1^\pm}pprox$ 260 GeV, $m_{ ilde{\ell}}pprox$ 140 GeV, $m_{\chi_1^0}pprox$ 100 GeV

Cuts largely taken from ATLAS-CONF-2012-012

Transverse WW mass distributions (control region):

Doubling WW background for $m_{T,WW} \gtrsim 350$ GeV: would be observable: no access seen:

ruled out

Second scenario

 $m_{\chi_1^\pm}pprox$ 260 GeV, $m_{ ilde{\ell}}pprox$ 195 GeV, $m_{\chi_1^0}pprox$ 124 GeV

SUSY confronts LHC results

Heidi Rzehak

Rencontres de Blois, 29 May 2012

Second scenario

 $m_{\chi_1^\pm}pprox$ 260 GeV, $m_{ ilde{\ell}}pprox$ 195 GeV, $m_{\chi_1^0}pprox$ 124 GeV

 \Rightarrow Enhancement of background in signal region

Second scenario

 $m_{_{\! V}^\pm}pprox$ 260 GeV, $m_{_{\! \widetilde{\ell}}}pprox$ 195 GeV, $m_{_{\! V^0}}pprox$ 124 GeV

 $m_{T,WW}$ distribution of SUSY processes slightly different in signal region:

Tail for large $m_{T,WW}$: invisible at the moment

Correction factor

Background estimate:

$$N_S^{\text{norm}} = \alpha (N_C^{WW} + N_C^{\text{SUSY}})$$

True number of events:

 $\textit{N}_{\mathcal{S}}^{\text{true}} = \textit{N}_{\mathcal{S}}^{\textit{WW}} + \textit{N}_{\mathcal{S}}^{\textit{SUSY}}$

Correction factor:

$$C = rac{N_S^{ ext{true}}}{N_S^{ ext{norm}}} = 0.924$$

With additional cut of $0.75 \cdot m_h < m_T < m_H$:

C = 0.897

Conclusion

- Many LHC results already!
- Hope for more (not only exclusions...)!
- LHC results are constraining SUSY model parameter space
- Still possible:

Data driven background method might lead to an overestimation due to SUSY processes

