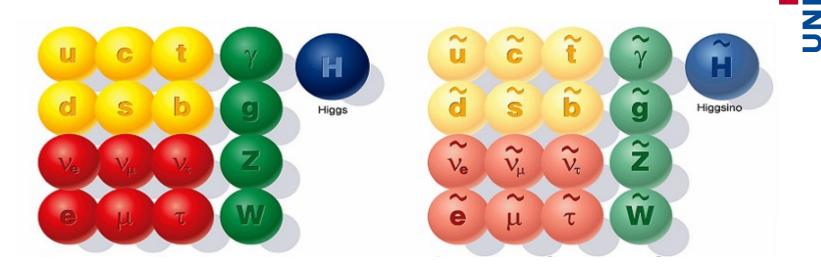
Search for SUSY at the LHC using the E_{T}^{miss} signature


Michel Janus Freiburg University On behalf of the ATLAS and CMS Collaborations

Albert-Ludwigs-Universität Freiburg

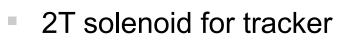
24th Rencontres des Blois, France

UNI FREIBURG

SUSY Introduction

- Symmetry between fermions and bosons
- Many models assume R-Parity conservation
 - Means SUSY particles are produced in pairs
 - Stable lightest SUSY particle (LSP) which escapes the detector unseen
 - But not the only way for SUSY to cause large ${\sf E}_{\!_{\rm T}}^{\rm miss}$

BURG


ATLAS

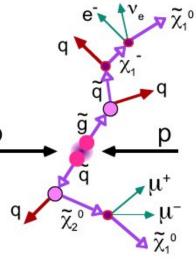
The Detectors

- 3.8T solenoid
- Silicon tracker
- Lead tungsten crystal ECAL

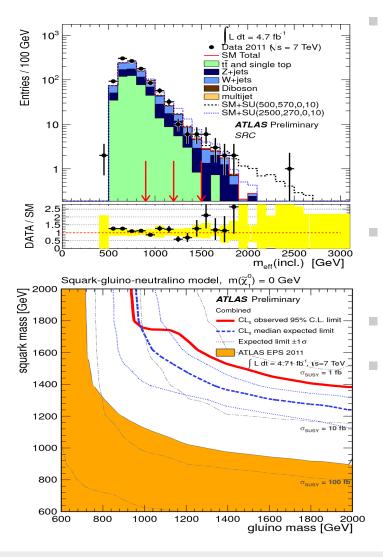
CMS

- Brass scintillator HCAL
- Iron return yoke muon spectrometer

- Silicon & transition radiation tracker
- Lead-Ar sampling ECAL
 - Fe-scint + Cu-Ar sampling HCAL
 - Air toroid for muon spectrometer


29.05.12

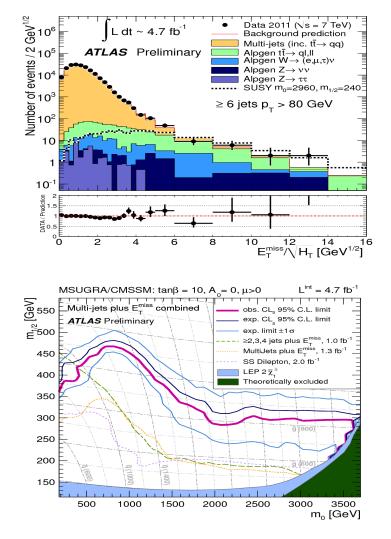
UNI FREIBURG


Inclusive searches for strong squark & gluino production

- Strong production of 1^{st} , 2^{nd} gen \tilde{q} , \tilde{g} , decay chains ending in χ^0_{1}
 - Length of decay chain depends on SUSY model
- Common variables to select q, g cascades:
 - E_{τ}^{miss} , jet multiplicity, light lepton multiplicity
 - H_{τ} := scalar sum of jet p_{τ} (and $e/\mu/\gamma p_{\tau}$ for ATLAS)
 - Effective mass: $m_{eff} = H_T + E_T^{miss}$
 - M₊: transverse mass of leptons and E₊^{miss}
 - Multijet+fake E_{T}^{miss} backgrounds from data-driven methods
 - Z, W and leptonic top often estimated using control regions in data
 - transferred to signal region using simulation

m

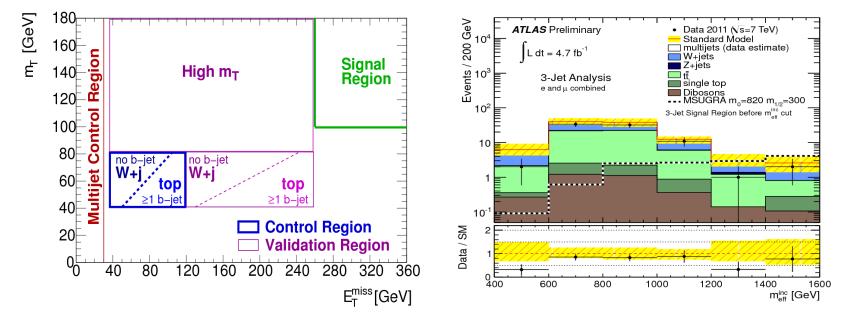
ATLAS: 2-6 Jets + E_T^{miss} ATLAS-CONF-2012-033



Fully hadronic decay chains

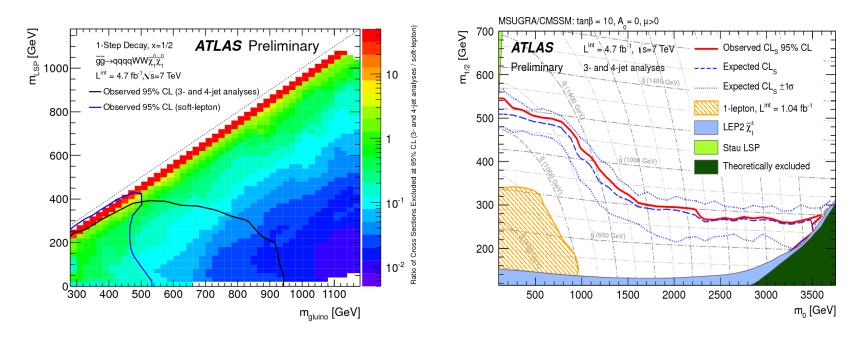
- Low jet multiplicity for squark production
- higher jet multiplicities for gluino production
- Use m_{eff} and E^{miss} to define signal region depending on jet multiplicity Backgrounds: Top,W,Z,multijets Limits from 4.7fb⁻¹ in
 - minimal super gravity (mSUGRA)
 - constrained minimal supersymmetric standard model (CMSSM)
 - phenomenological models

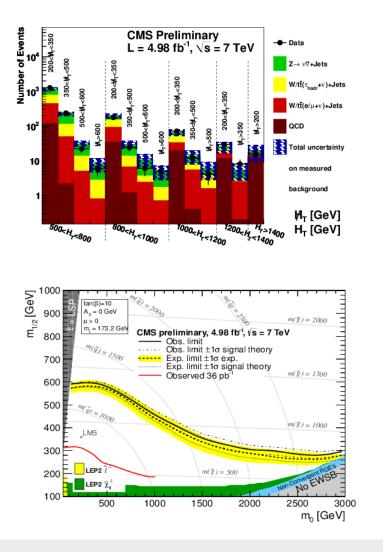
ATLAS-CONF-2012-037 $\operatorname{ATLAS-CONF-2012-037}$



- Longer fully hadronic decay chains from gluinos
 - Many high p_T jets, no E_T^{miss} required at trigger level
- Only additional cut on E_T^{miss} significance: E_T^{miss}/sqrt(H_T)
- Backgrounds: top,multijet (W,Z)
- Limits from 4.7fb⁻¹ in mSUGRA, CMSSM and simplified models

ATLAS: Jets + e/μ + E_T^{miss} ATLAS-CONF-2012-041

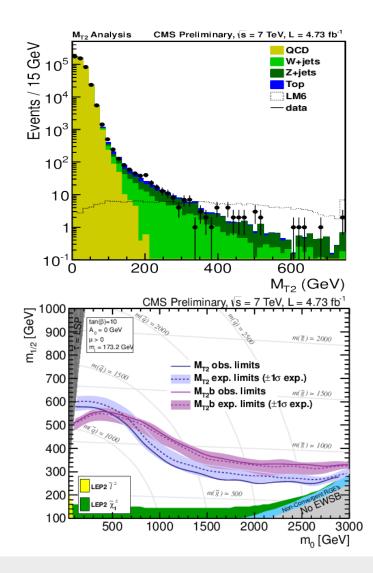

- require one light lepton with $p_{\tau} < 25$ GeV and low number of jets
- Further cuts on E_{T}^{miss} , m_{T} and m_{eff} to select signal
- Backgrounds: W, top


29.05.12

ATLAS: Jets + e/μ + E_T^{miss} ATLAS-CONF-2012-041

- Limits from 4.7fb⁻¹ in mSUGRA, CMSSM and simplified models with decay gluino → $q\overline{q}\chi^{+}_{1} \rightarrow q\overline{q}W(^{*})\chi^{0}$
- Additional SR with soft leptons ($7 < p_{T} < 25$) GeV

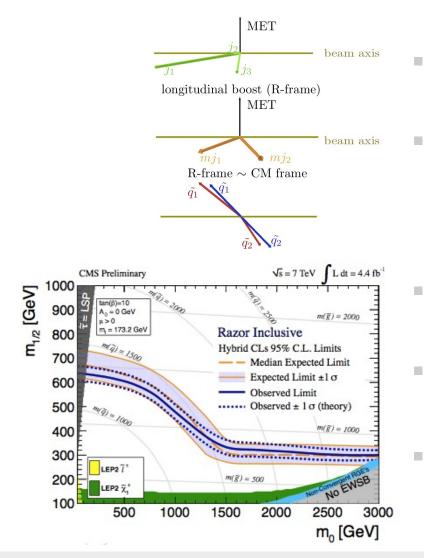
CMS Jets + E_T^{miss} with H_T/MH_T CMS PAS SUS-11-004



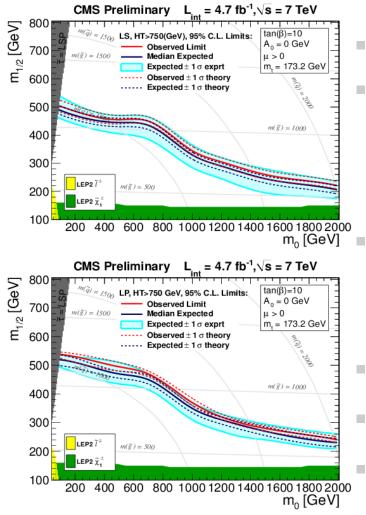
Only require 3 jets → Sensitive to short (full had.) decay chains
 Use H_T and MH_T to select signal
 MH_T := vectorial p_T sum of all jets p_T>30GeV

- Select signal in 14 exclusive bins in H₁ vs. MH₁ plane
- Backgrounds: W,Z,top,multijets
- Limits from 4.98fb⁻¹ in mSUGRA, CMSSM and simplified models

m


CMS Jets + E_{T}^{miss} with M_{T2}^{T2} CMS-PAS-SUS-12-002

$$M_{T2} = \min_{p_T^{c1} + p_T^{c2} = \not p_T} \left[\max\left(m_T^{(1)}, m_T^{(2)} \right) \right]$$


- Combine jets into two pseudojets
- M_{T2} close to 0 for balanced dijet like events
- Proportional to E₁^{miss} in SUSY events
- Select signal by requiring only 3 jets and split analysis in 2 bins of H₁
- Backgrounds: W,Z,multijets
- Limits from 4.73fb⁻¹ in CMSSM and simplified models

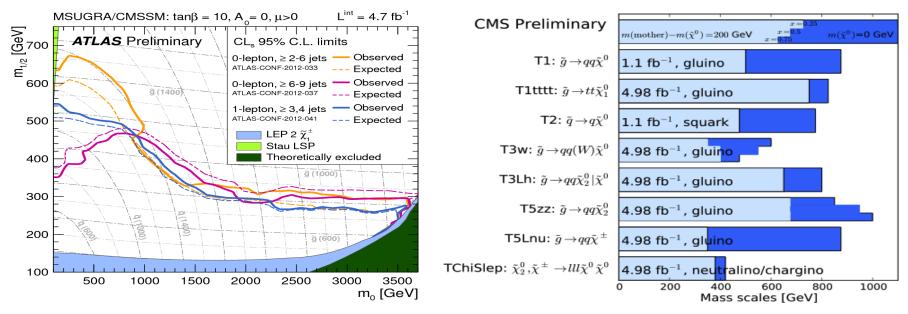
CMS Jets $(+ e/\mu) + E_T^{miss}$ with Razor CMS-PAS-SUS-12-005

- Combine jets into two pseudo-jets using hemisphere algorithm
- invariant and transverse masses of pseudo-jet pair discriminate
 between heavy pair production and
 Standard Model background
- extrapolate exponential fit of background to signal region
- Includes channels with any number of light leptons
 - Limits from 4.4fb⁻¹ in mSUGRA, CMSSM and simplified models

CMS Jets + single $e/\mu + E_T^{miss}$ CMS-PAS-SUS-12-010

Two methods used

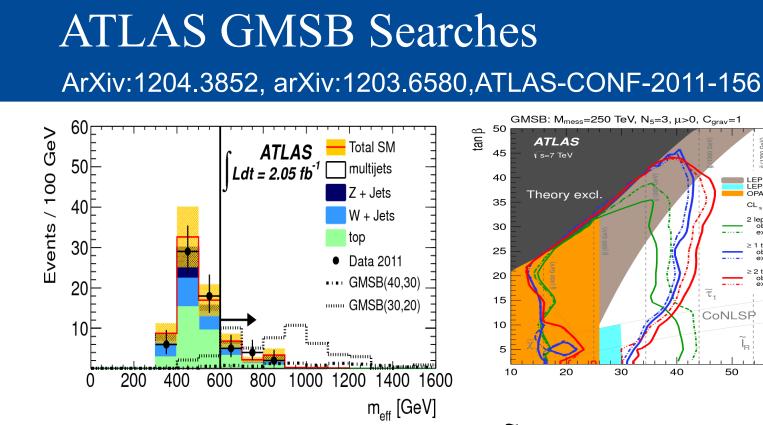
Lepton spectrum:


- Use correlation between e/µ $p_{_T}$ and $E_{_T}^{\mbox{miss}}$ in SM BG

Lepton projection

- Search variable correlated to helicity angle of lepton from W decay
- Use H_{τ} in both to define signal region
- W and top are dominant backgrounds
- Limits on CMSSM from 4.7fb⁻¹

Overview of Current Status


- Searches for squarks and gluinos in final states with Jets (+ lepton) + E_T^{miss} performed
- ATLAS and CMS interpret results in CMSSM (+simpl. models)
- Gluino masses up to 800-900 GeV excluded
- Squark masses up to ~1.5 TeV excluded for many gluino masses

Searches for gauge-mediated SUSY breaking (GMSB) inspired scenarios

- LSP is almost massless (gravitino)
- Next-to-lightest SUSY particle (NLSP) determines phenomenology:
- Possible NLSPs: τ, χ, Ĩ, ĝ
 - $\tilde{\tau}$ NLSP: final states with τ leptons (discussed here)
 - X⁰, NLSP: final states with leptons, depending on X⁰
 - X^0 bino like: decay to $\gamma\gamma$
 - (arXiv:1111.4116 ,CMS result discussed here)
 - X^0 higgsino like: decay to $Z+E_{T}^{miss}$
 - (ATLAS-CONF-2012-047, arXiv: 1204.3774)

BUR

- $\tilde{\tau}$ search with 1 or 2 hadronically decaying taus
- Select signal with jets, $\rm E_{\tau}^{miss},\, m_{_{\rm eff}}$ and $\rm M_{_{T}}$
- Backgrounds: W,top,Z

- I search in dilepton + jets + E miss final state
- Performs better at low $tan\beta$
- Backgrounds: Top, dibosons

URG

LEP 95% CL ($\widetilde{\tau}_{1},$ prel.) LEP 95% CL ($\widetilde{\mu}_{R},$ prel.)

2 leptons (1 fb⁻¹, prel.)

60

70

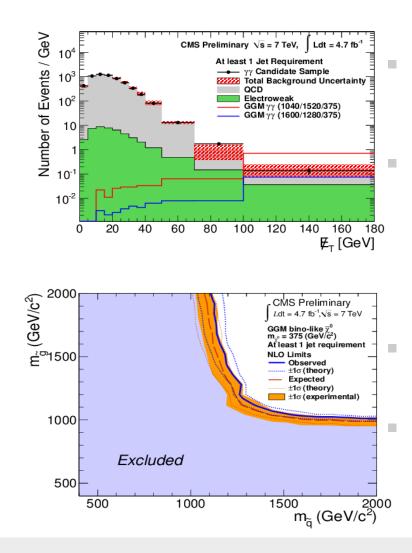
 Λ [TeV]

OPAL 95% CL

obs. limi exp. limit

≥ 1 tau (2 fb⁻¹)

obs. limit

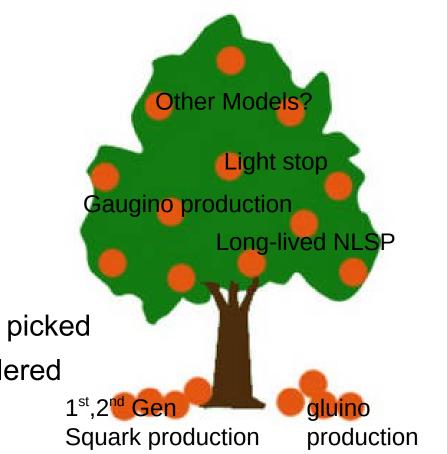

exp. limit ≥ 2 taus (2 fb⁻¹)

obs. limit exp. limit

50

CL 95% CL limit:

CMS Diphoton Search CMS-PAS-SUS-12-001

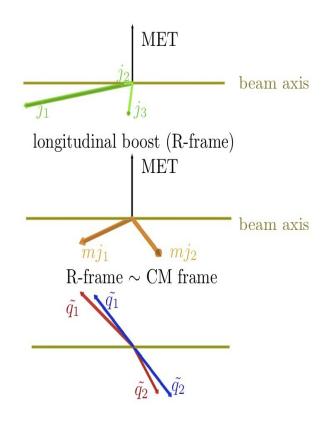

Search in single and di-photon final states with large $\mathsf{E}_{_{T}}^{\mbox{miss}}$

Backgrounds:

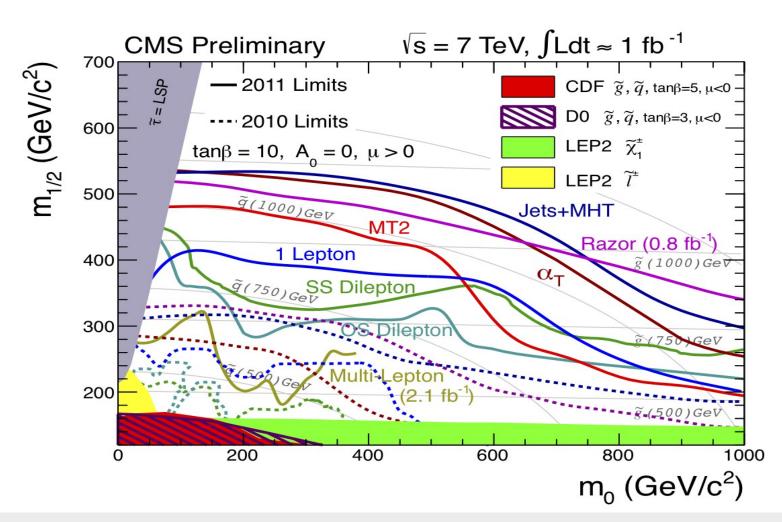
- real photon, fake E₁miss
- Real or fake photon together with
 W→ev decay
- Limits set in simplified models for squark/gluino/neutralino masses
- But also interesting channel for general gauge mediation (GGM) and GMSB

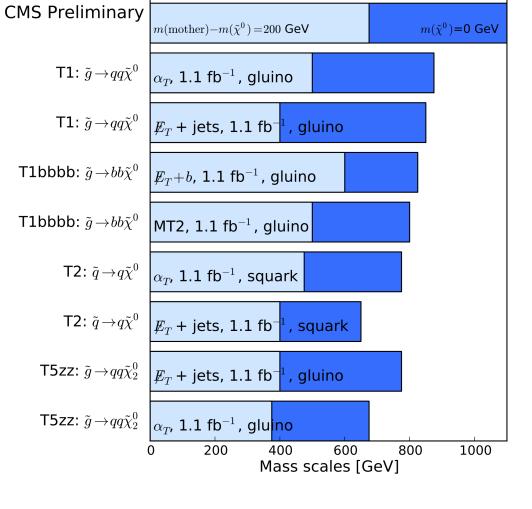
Outlook

- First searches at LHC designed to find "light" squarks and gluinos in channels with:
 - Jets + E_{T}^{miss}
 - Jets + leptons + E_{T}^{miss}
 - Jets + taus + E_{T}^{miss}
 - $Z + E_{T}$ miss
 - _ photons + E_miss
 - \rightarrow all the low-hanging fruit has been picked
- Many other models are being considered now



Backup


CMS Jets + ETMiss with Razor CMS-PAS-SUS-12-005


- j1,j2,j3= jets in lab frame,
- mj1,mj2 = megajets in Rframe (p1=p2)
- q1,q2 (red) = squarks generator level at the Rframe
- q1,q2 (blue) = squarks generator level at their CM frame

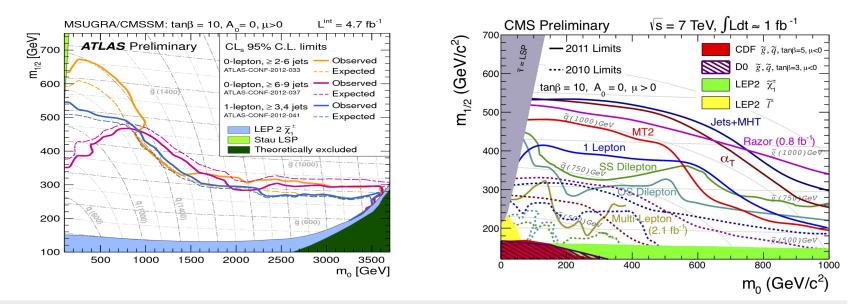
Summary

29.05.12

SUSY Searches at LHC using the ETMiss signature

Summary

Summary


U	
UR	
SE	

ittenlis-bridge.

		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)
Inclusive searches	MSUGRA/CMSSM : 0-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.40 TeV $\tilde{q} = \tilde{g}$ mass Ldt = (0.03 - 4.7) fb ⁻¹
	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=4.7 fb (2011) [ATLAS-CONF-2012-041] 1.20 TeV q = g mass
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV g mass (large m ₀)
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.38 TeV \tilde{q} mass $(m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}_1^0$) ATLAS
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 940 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$ Preliminary
sive	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$
clus	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (tan β < 35)
Ц	GMSB : $1-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV \tilde{g} mass (tan β > 20)
	$GMSB: 2-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 990 GeV g̃ mass (tanβ > 20)
	$GGM: \gamma\gamma + E_{T,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116] 805 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) > 50$ GeV)
-	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$) : 0-lep + b-j's + $E_{\tau, miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV g mass (m(χ_1^0) < 300 GeV)
atior	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0}$) : 1-lep + b-j's + $E_{\tau, miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 150 \text{ GeV})$
nera	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$) : 2-lep (SS) + j's + $E_{\tau, miss}$	L=2.1 fb ⁻ (2011) [ATLAS-CONF-2012-004] 650 GeV g̃ mass (m(𝔅 ⁰) ≤ 210 GeV)
d ge	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$) : multi-j's + $E_{\tau, miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV g̃ mass (m(χ̃ ₁ ⁰) < 200 GeV)
Third generation	Direct $\tilde{b}\tilde{b}$ ($\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV b̃ mass (m(χ ⁰ ₁) ≤ 60 GeV)
	Direct $\tilde{t}\tilde{t}$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)
DG	Direct gaugino $(\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3I \tilde{\chi}_{1}^{0})$: 2-lep SS + $E_{\tau,\text{miss}}$	L=1.0 fb ⁺ (2011) [1110.6189] 170 GeV $\overline{\chi}_{1}^{\pm}$ mass $((m(\overline{\chi}_{1}^{0}) < 40 \text{ GeV}, \overline{\chi}_{1}^{0}, m(\overline{\chi}_{1}^{\pm}) = m(\overline{\chi}_{2}^{0}), m(\overline{l}, \overline{v}) = \frac{1}{2}(m(\overline{\chi}_{1}^{0}) + m(\overline{\chi}_{2}^{0})))$
Ω	Direct gaugino $(\bar{\chi}_1^{\pm} \bar{\chi}_2^0 \rightarrow 3 I \bar{\chi}_1^0)$: 3-lep + $E_{T, miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV $\tilde{\chi}_1^{\pm}$ mass ($m(\tilde{\chi}_1^0) \le 170$ GeV, and as above)
es	AMSB : long-lived $\tilde{\chi}_1^{\pm}$	$\frac{118 \text{ GeV}}{\tilde{\chi}_1^{\pm} \text{ mass } (1 < \tau(\tilde{\chi}_1^{\pm}) < 2 \text{ ns, } 90 \text{ GeV limit in } [0.2,90] \text{ ns)}$
rticl	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV g mass
l pa	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b mass
live	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV t mass
Long-lived particles	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022] 810 GeV g mass
Lo	GMSB : stable $\tilde{\tau}$	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV ₹ mass
RPV	RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV ν _τ mass (λ ² ₃₁₁ =0.10, λ ₃₁₂ =0.05)
	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ^{-*} (2011) [1109.6606] 760 Gev q = g mass (cτ _{LSP} < 15 mm)
	MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.77 TeV g mass
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ^{-*} (2010) [110.2893] 185 GeV sgluon mass (excl: m _{sg} < 100 GeV, m _{sg} ≈ 140 ± 3 GeV)
		10 ⁻¹ 1 10
*0	Only a selection of the available mass limits on new states or r	Mass scale [TeV

Overview of Current Status

- Searches for squarks and gluinos in final states with Jets (+ lepton) + E_T^{miss} performed
- ATLAS and CMS interpret results in CMSSM (+simpl. models)
- Gluino masses up to 800-900 GeV excluded
- Squark masses up to ~1.5 TeV excluded for many gluino masses

Background Estimation Strategies

- Multijet and fake E^{miss} backgrounds estimated from datadriven methods
- Z, W and leptonic top often estimated using control regions in data, transferred to SR using simulation:

$$N_{est, SR} = N_{MC, SR} / N_{MC, CR} \times (N_{obs, CR} - N_{bkg, CR})$$

- Control regions depend on analysis, i.e.:
 - M_{T} (+ E_{T}^{miss}) for backgrounds with leptons from W (from top)
 - Separate W from top with b-quark tagging
 - $Z \rightarrow vv$ + jets from γ + jets control sample