Di-Boson Production and Anomalous Couplings at the LHC

Rencontres de Blois 2012

29 May 2012

Eve Le Ménédeu (ATLAS) IFAE, Universitat Autònoma de Barcelona

On behalf of the ATLAS and CMS collaborations

Introduction and motivations

Test of the SM : vector-bosons self-interactions are constrained by SM

- WW γ and WWZ vertices predicted and experimentally observed
- \blacktriangleright ZZ γ , Z γ Z, Z $\gamma\gamma$ and ZZZ vertices forbidden

New Physics : could modify cross-sections, kinematic distributions, give anomalous triple gauge couplings (TGC)

Background to : Higgs and new physics

Overview

Both experiments, ATLAS and CMS, analyzed dibosons events on 2010 and 2011 data :

Fiducial cross-section can also be found for some of those analyses (depends on channel and experiment).

Leptonic channels (e, μ) chosen :

- clean signal, requiring high pT isolated leptons
- · but small event yields

Dominant backgrounds :

- W/Z+jets
- top
- other dibosons

mainly estimated by data driven methods on control regions when backgrounds produce fake leptons or photons, MC for the others (mainly dibosons)

29 May 2012

$\textbf{Cross-sections}: \mathsf{ZZ} \to 4\ell$

$\mathsf{ZZ}\to 4\ell$

Selection

- 4 isolated leptons with $p_T > 7 \text{ GeV}$ (leading lepton $p_T > 20 \text{ GeV}$ or more ^a)
- $66 < M_Z < 116$ GeV for ATLAS and $60 < M_Z < 120$ GeV for CMS
- CMS : also include Z $\rightarrow \tau \tau$, for the second Z
- a. depending on experiment and lepton

Observed events

$$\begin{array}{l} \text{ATLAS}: \ N_{obs} = 62 \ (\text{on } 4.5 \ \text{fb}^{-1}) \\ \text{CMS}: \ N_{obs} = 8 \ \text{for} \ \ell = e, \mu \\ N_{obs} = 1 \ \text{for} \ \text{ZZ} \rightarrow 2\ell 2\tau \ (\text{on } 1.1 \ \text{fb}^{-1}) \end{array}$$

Measured cross sections

$$\begin{array}{l} \mbox{Expected}: \ \sigma^{SM} = 6.5^{+0.3}_{-0.2} \ \mbox{pb} \ (MCFM) \\ \mbox{ATLAS}: \ \sigma^{tot} = 7.2^{+1.1}_{-0.9} \ \mbox{(stat)} \ ^{+0.4}_{-0.3} \ \mbox{(syst)} \ \pm 0.3 \ \mbox{(lumi)} \ \mbox{pb} \\ \mbox{CMS}: \ \sigma^{tot} = 3.8^{+1.5}_{-1.2} \ \mbox{(stat)} \ \pm 0.2 \ \mbox{(syst)} \ \pm 0.2 \ \mbox{(lumi)} \ \mbox{pb} \end{array}$$

 $\begin{array}{l} \text{ATLAS}: 4.7 \ fb^{-1}, \ \text{atlas-conf-2012-026} \\ \text{CMS}: 1.1 \ fb^{-1}, \ \text{cms-pas-ewk-11-010} \end{array}$

29 May 2012

$\textbf{Cross-sections}: \mathsf{Z} \to 4\ell$

 $Z\to 4\ell$

Interest

- · Background for Higgs, especially at low mass
- Same final state as $ZZ \rightarrow 4\ell$

Selection

- 4 isolated leptons, one with $p_T > 7$ GeV (+ trigger requirements)
- $m_{\ell\ell} > 4$ GeV (for 6 pairs)
- $80 < m_{4\ell} < 100 \text{ GeV}$

Observed events

$$\begin{array}{l} \mbox{CMS}: \ N_{obs} = 26, \mbox{with } N_{exp \ sig} = 24.6 \pm 2.2 \mbox{ and } \\ N_{exp \ bkg} = 0.4 \pm 0.1 \end{array}$$

Measured cross-section

Expected: $\sigma^{SM} \times BR(Z \rightarrow 4\ell) = 120 \pm 4.92 \text{ fb}$ CMS: $\sigma \times BR(Z \rightarrow 4\ell) = 125^{+26}_{-23}(\text{stat}) \stackrel{+9}{-6}(\text{syst}) \stackrel{+7}{-5}(\text{lumi}) \text{ fb}$

29 May 2012

Cross-sections : $ZZ \rightarrow 2\ell 2\nu$

$ZZ \rightarrow 2\ell 2\nu$

$ATLAS: 4.7 \ fb^{-1}$, atlas-conf-2012-027

Selection

- 2 isolated leptons with $p_T > 20$ GeV with $|M_Z M_{\ell^+\ell^-}| < 15$ GeV
- Axial- $E_T^{miss} = E_T^{miss} \cos \Delta \phi > 80$ GeV where $\Delta \phi = \Delta \phi (E_T^{miss}, p_T^{\ell \ell})$
- Jet veto : remove events with jets with $p_T > 25 \text{ GeV}$
- $\bullet ~~|E_T^{miss}-p_T^Z|/p_T^Z < 0.6~(\text{reduce WW})$

Observed events

ATLAS: $N_{obs} = 78$ for $N_{exp \ bkg} = 40.7 \pm 5.6$

Measured cross sections

Expected : $\sigma^{SM} = 6.5^{+0.3}_{-0.2}$ pb (MCFM) ATLAS : $\sigma^{tot} = 5.4^{+1.3}_{-1.2}$ (stat) $^{+1.4}_{-1.0}$ (syst) ± 0.2 (lumi) pb

Cross-sections : $WZ \rightarrow \ell \nu \ell \ell$

$WZ \to \ell \nu \ell \ell$

Selection

- Z boson : 2 isolated leptons with $p_T > 15$ GeV, $|M_{\ell\ell} - M_Z| < (10,30)$ GeV (ATLAS,CMS)
- 3^{rd} lepton with $p_T > 20 \text{GeV}$
- $E_T^{miss} > (25,30)$ GeV (ATLAS,CMS)
- W boson : reconstructed from the 3^{rd} lepton and E_T^{miss}
- ATLAS : $M_T^W > 20$ GeV

Observed events

$$\begin{split} \text{ATLAS}: \ N_{obs} &= 71 \text{ with } N_{exp \ bkg} = 12.1 \pm 1.4 (\text{stat}) \overset{+4.1}{_{-2.0}} (\text{syst}) \\ \text{CMS}: \ N_{obs} &= 75 \text{ with } N_{exp \ bkg} = 8.12 \end{split}$$

Measured cross sections

$\begin{array}{l} ATLAS: 1.02 \ fb^{-1}, \ {\mbox{plb}}\ 709 \ (2012) \ 341\text{-}357 \\ CMS: 1.1 \ fb^{-1}, \ {\mbox{cms}}\ {\mbox{plb}}\ 708 \ {\mbox{cms}}\ {\mbox{cms}}\ 1100 \end{array}$

29 May 2012

$\textbf{Cross-sections}: WW \rightarrow \ell \nu \ell \nu$

$\mathrm{WW} \to \ell \nu \ell \nu$

Selection

- Exactly 2 isolated leptons, $p_T > 20$ GeV
- Z/γ^* veto : $M_{\ell\ell} > 15$ (20) GeV, $M_{\ell\ell'} > 10$ (12) GeV $|M_{\ell\ell} M_Z| > 15$ GeV (ee, $\mu\mu$)
- $E_{T,rel}^{miss}$ > 50 (40) (ee), 55 (40) ($\mu\mu$) and 25 (20) GeV (e μ)
- Top veto : remove events containing jets with $p_T>25\ (30)$ GeV or tagged jet with $p_T>20$ GeV
- CMS : $p_T^{\ell\ell} > 45$ GeV

When 2 numbers : ATLAS (CMS)

Relative E^{miss}_T or projective E^{miss}_T

 To reduce impact of from mis-measured leptons or jets on E^{miss}_T

•
$$\Delta \phi = \Delta \phi (E_{T}^{miss}, p_{T}^{nearest \ lepton \ or \ jet})$$

• $E_{T,rel}^{miss} = E_T^{miss} \sin \Delta \phi$ if $\Delta \phi < \pi/2$ $E_{T,rel}^{miss} = E_T^{miss}$ if $\Delta \phi \ge \pi/2$ $\begin{array}{l} \text{ATLAS}: 4.7 \ fb^{-1}, \text{ atlas-conf-2012-025} \\ \text{CMS}: 4.92 \ fb^{-1}, \text{ cms-pas-smp-12-005} \end{array}$

29 May 2012

$\mathbf{Cross-sections}: \mathsf{WW} \to \ell \nu \ell \nu$

$WW \rightarrow \ell \nu \ell \nu$

Selection

- Exactly 2 isolated leptons, $p_T > 20$ GeV
- Z/γ^* veto : $M_{\ell\ell} > 15$ (20) GeV, $M_{\ell\ell'} > 10$ (12) GeV $|M_{\ell\ell} M_Z| > 15$ GeV (ee, $\mu\mu$)
- $E_{T,rel}^{miss} > 50$ (40) (ee), 55 (40) ($\mu\mu$) and 25 (20) GeV (e μ)
- Top veto : remove events containing jets with $p_T>25\ (30)$ GeV or tagged jet with $p_T>20$ GeV
- CMS : $p_T^{\ell\ell} > 45~\text{GeV}$

Observed events

$$\begin{array}{l} \text{ATLAS}: \ N_{obs} = 1524 \ \text{with} \ N_{exp \ bkg} = 531 \pm 51 \\ \text{CMS}: \ N_{obs} = 1134 \ \text{with} \\ N_{exp \ bkg} = 247.1 \pm 14.6 \ (\text{stat}) \pm 29.5 \ (\text{syst}) \end{array}$$

Measured cross sections

 ATLAS : 4.7 fb^{-1} , atlas-conf-2012-025 CMS : 4.92 fb^{-1} , cms-pas-smp-12-005

29 May 2012

Cross-sections : $W\gamma$ and $Z\gamma$

$W\gamma$ and $Z\gamma$: ATLAS analysis

Selection

- W boson : 1 isolated lepton with $p_T > 25$ GeV, $E_T^{miss} > 25$ GeV, $M_T > 40$ GeV
- Z boson : 2 isolated leptons with $p_T > 25$ GeV, $M_{\ell\ell} > 40$ GeV
- $\gamma: E_T > 15$ GeV, isolated
- $\Delta R(\ell,\gamma) > 0.7$
- Exclusive measurement : veto of events containing jets with $p_T > 30 \text{ GeV}$

ATLAS : 1.02 fb⁻¹, arXiv :1205.2531[hep-ex]

submitted to PLB

29 May 2012

Cross-sections : $W\gamma$ and $Z\gamma$

$W\gamma$ and $Z\gamma$: CMS analysis

 $CMS: 36 \ pb^{-1}$, PLB 701 (2011) 535-555

Selection

- W boson : 1 lepton with $p_T > 20$ GeV, $E_T^{miss} > 25$ GeV
- Z boson : 2 leptons with $p_T >$ 20 GeV, $M_{\ell\ell} >$ 50 GeV
- $\gamma: E_T > 10$ GeV, isolated
- $\Delta R(\ell,\gamma) > 0.7$

Measured cross-section

W γ , considering $E_{T}^{\gamma} > 10$ GeV and $\Delta R > 0.7$:

- $\sigma^{SM} = 49.4 \pm 3.8 \text{ pb}$
- $\sigma \times BR(\ell\nu) = 56.3 \pm 5.0(\text{stat}) \pm 5.0(\text{syst}) \pm 2.3(\text{lumi}) \text{ pb}$

Z $\gamma,$ considering $E_T^{\gamma}>$ 10 GeV, $\Delta R>$ 0.7 and $M_{\ell\ell}>$ 50 GeV :

- $\sigma^{\rm SM} = 9.6 \pm 0.4 \, {\rm pb}$
- $\sigma \times BR(\ell \ell) = 9.4 \pm 1.0(\text{stat}) \pm 0.6(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$

TGC evaluation

Accessible couplings

Assuming the CP conservation (except for f_{40}^V) :

Coupling	Parameters	Channel
$WW\gamma$	$\lambda_{\gamma}, \Delta \kappa_{\gamma}$	WW, W γ
WWZ	$\lambda_{Z}, \Delta \kappa_{Z}, \Delta g_{1}^{Z}$	WW, WZ
$ZZ\gamma$	h_3^Z, h_4^Z	${\sf Z}\gamma$
$Z\gamma\gamma$	$h_3^{\gamma}, h_4^{\gamma}$	${\sf Z}\gamma$
ZZZ	f_{40}^Z, f_{50}^Z	ZZ
$Z\gamma Z$	$f_{40}^{\gamma}, f_{50}^{\gamma}$	ZZ
allowed by CAA fambidden by CAA		

allowed by SM, forbidden by SM

In the Standard Model : $g_1^V = \kappa_V = 1$, all the others are 0. Hence, $g_1^V = 1 + \Delta g_1^V$ and $\kappa_V = 1 + \Delta \kappa_V$.

Method

- Use reconstruction-level data, possibly in a restricted phase-space (WW, W γ and Z $\gamma)$
- Use likelihood 1D or 2D fit to determine the aTGCs

TGC : Limits on TGC

Anomalous couplings from ZZ and WZ

TGCs measured on ZZ $\rightarrow 4\ell$ by ATLAS at 1.02 fb⁻¹ Derived from the number of events. PRL 108, 041804 (2012) TGCs measured on WZ $\rightarrow \ell \nu \ell \ell$ by ATLAS at 1.02 fb⁻¹ Derived from the combined cross-section measurement. PLB 709 (2012) 341-357

29 May 2012

TGC : Limits on TGC

Anomalous couplings from WW

TGC measured on WW $\rightarrow \ell \nu \ell \nu$

- by CMS, on 36 pb⁻¹ (on 2010 data, PLB 699 (2011) 25-47)
- by ATLAS, on 1.02 fb⁻¹ (on 2011 data, arXiv :1203.6232[hep-ex], submitted to PLB)

Some differences in details of the effective theory used.

1D or 2D fit on TGCs parameters taken in $(\Delta \kappa_Z, \lambda_Z, \Delta g_1^Z)$ for ATLAS and $(\Delta \kappa_\gamma, \lambda_Z, \Delta g_1^Z)$ for CMS.

29 May 2012

Anomalous couplings from W γ and Z γ

Comparison of ATLAS (green) and CMS (blue) results.

TGC measured on $W\gamma \rightarrow \ell \nu \gamma$ and $Z\gamma \rightarrow \ell \ell \gamma$

- by CMS, on 36 pb⁻¹ (on 2010 data, PLB 701 (2011) 535-555)
- by ATLAS, on 1.02 fb⁻¹ (on 2011 data, arXiv :1205.2531[hep-ex], sub. to PLB) Both experiments used the exclusive measurement, in the highest bin in E_T^{γ} , 1D and 2D fits were done.

Conclusion

- Dibosons cross-sections and limits on TGCs have been measured by ATLAS and CMS
- Agreement with SM within uncertainties
- · Already surpassing LEP and Tevatron in some channels
- New measurements and limits to come, on 2011 data (7 TeV) and 2012 data (8 TeV)

Backup

Event display : $ZZ \rightarrow 4\ell$

Backup

TGC details

Effective Lagrangian

$$\mathcal{L}_{WWV}/g_{WWV} = ig_{1}^{V}(W_{\mu\nu}^{+}W^{-\mu}V^{\nu} - W_{\mu\nu}^{-}W^{+\mu}V^{\nu}) + i\kappa_{V}W_{\mu}^{+}W_{\nu}^{-}V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}W_{\rho\mu}^{+}W^{-\mu}{}_{\nu}V^{\nu\rho}$$

 $g_1^V=1+\Delta g_1^V$ and $\kappa_V=1+\Delta \kappa_V,$
 g_1^γ fixed to 1 by electromagnetic gauge invariance LEP scenario :

$$\begin{split} \Delta \kappa_{\gamma} &= -\frac{\cos^2 \theta_W}{\sin^2 \theta_W} (\Delta \kappa_Z - \Delta g_1^Z) \text{ and } \lambda_{\gamma} = \lambda_Z \\ \text{HISZ scenario} : \Delta g_1^Z &= \frac{\Delta \kappa_{\gamma}}{2\cos^2 \theta_W} \end{split}$$

LEP scenario was used by ATLAS, D0 and LEP while HISZ scenario was used by CMS and CDF for the estimation of aTGCs from WW events

Form factor

To avoid divergent cross-section at high energy, a form factor depending on the scale Λ can be introduced :

$$\alpha(\hat{s}) = \frac{\alpha}{(1 + \hat{s}/\Lambda^2)^n}$$

with α the parameter considered, $\sqrt{\hat{s}}$ the invariant mass of the considered process and n depends on the coupling (2 for Δg_1^{V} , $\Delta \kappa_V$ and λ_V , 3 for h_3^{V} , f_4^{V} and f_5^{V} , and 4 for h_4^{V}).

29 May 2012

Backup

ATLAS and CMS

