Mass Measurement at Colliders

Rakhi Mahbubani CERN

Rencontres de Blois 2012

May 29th 2012

Mass Measurement with MET at Colliders

Rakhi Mahbubani CERN

Rencontres de Blois 2012

May 29th 2012

Parameters

WHAT MET?

momentum not ruled out. c.f. talks by Csaki, Weiler, ...

Phase Space

$$\sigma\left(\textit{pp}
ightarrow\textit{CD}
ight) = \sum\limits_{a,b=q,g}\int f_a f_b \int_{\mathrm{PS}} \left|M\left(ab
ightarrow\textit{CD}
ight)
ight|^2$$

Phase space singularities = edges, endpoints, cusps, ...

Rakhi Mahbubani

Mass Bound Variables

Barr et al 1105.2977

What is best bound for invariant mass of a group of N particles decaying to visibles + invisibles?

 $m_N(\mathcal{M}_1,\mathcal{M}_2,\cdots,\mathcal{M}_N) = \min_{q_T = p_T'} \left[\max\left(M_1,M_2,\cdots,M_N\right) \right] \le \max\left(M_1,M_2,\cdots,M_N\right)$

$$M_a = \sum_{i=1}^{n_a} m_i$$

- · Gives event-by-event lower bound on maximum parent mass
- Can saturate bound for correct input M

Transverse mass

$$m_{T}(\mathcal{M}) = m_{V}^{2} + \mathcal{M}^{2} + 2\left(\sqrt{\mathcal{p}_{T}^{2} + \mathcal{M}^{2}}\sqrt{p_{T}^{2} + m_{V}^{2}} - \mathcal{p}_{T} \cdot p_{T}\right)$$

Rakhi Mahbubani CERN

Transverse mass

For massless invisibles, no upstream transverse momentum.

CDF 0708.3642

 $W \rightarrow \ell \nu$

Transverse mass

For massless invisibles, no upstream transverse momentum.

Name depends on context: cluster transverse mass, $m_{T, \text{true}}, \sqrt{s}_{\min}$

CDF 0708.3642

 $W \rightarrow \ell \nu$

 $s_{min}(0)$

Konar, Kong & Matchev 0812.1042

Correlation between maximum of $\sqrt{s_{min}}(0)$ distribution and sum of parent masses.

Independent of:

- process
- topology
- combinatorics

 $s_{min}(0)$

Konar, Kong & Matchev 0812.1042

Correlation between maximum of $\sqrt{s}_{min}(0)$ distribution and sum of parent masses.

Independent of:

- process
- topology
- combinatorics

Caution: correlation dependent on M and number of invisibles

Determining Endpoints

Curtin 1112.1095

Systematic way to automatically extract endpoint position. Procedure:

- Fit linear kink distribution to random domains within distribution
- Obtain kink distribution (with filters)
- Detect peaks in kink distribution (bump-hunting) for intervals of varying width w. Real peaks are upside-down growing cones

Code can be found at: http://insti.physics.sunysb.edu/ curtin/edgefinder/

Counting Invisibles

Giudice, Gripaios, RM 1108.1180

Counting Invisibles

Giudice, Gripaios, RM 1108.1180

Study near-endpoint behaviour to extract number of invisibles

Single Production

 $M \rightarrow W + nX$

 $M \rightarrow 2W + nX$

- Large difference between n = 1 and n > 1
- Distinguishing between different $n \ge 2$ more difficult
- Near-universal behaviour

Rakhi Mahbubani CERN

Standard Model Examples

Rakhi Mahbubani CERN

SUSY Example

Rakhi Mahbubani CERN

SUSY Example

Barr hep-ph/0405052

Mass Measurement with MET at Colliders

10