Z' production at the LHC in an extended MSSM

Gennaro Corcella

INFN, Laboratori Nazionali di Frascati

- 1. Introduction
- 2. Z' production in U(1)' and Sequential Standard Model
- 3. MSSM features including U(1)'
- 4. Z' branching ratios in SM and MSSM
- 5. Cross sections and event rates at the LHC
- 6. Conclusions

G.C. and S. Gentile, arXiv:1205.5780 [hep-ph].

Searches for heavy gauge bosons Z' among the main objectives of LHC

String-inspired U(1)', Kaluza–Klein gravitons, Sequential Standard Model (SM-like couplings)

LHC analyses focus on SM decays, e.g. high-mass dilepton resonances

CMS: $\mathcal{L} = 4.9 \text{ fb}^{-1}$ (dileptons)

 $m(Z_{SSM}')>2.32~{\rm TeV}$, $m(Z_\psi')>2.00~{\rm TeV},~m(Z_{KK}')>1.81-2.13~{\rm TeV}$

ATLAS: $\mathcal{L}=1.08 \text{ fb}^{-1} (e^+e^-)$ and $\mathcal{L}=1.21 \text{ fb}^{-1} (\mu^+\mu^-)$

 $m(Z_{SSM}')>1.83~{\rm TeV}$, $m(Z_{U(1)'}')>\!\!1.49\text{-}1.64~{\rm TeV}$, $m(Z_{KK}')>\!\!0.71\text{-}1.63~{\rm TeV}$

In BSM analyses, why not BSM Z' decays, e.g. both SM and MSSM modes Z' mass constrains invariant masses; unexplored corners of phase space

Lower SM branching ratios with BSM decays \Rightarrow lower Z' mass exclusion limits

T. Gherghetta et al., PRD57 (1998) 3178: pioneering work on Z' decays in the MSSM, but for $m_{Z'} = 700$ GeV and only one point in the parameter space

C.-F. Chang et al., JHEP09 (2011) 058: two sets of MSSM parameters and $m_{Z'}$ =1-2 TeV, but treating sfermion, gaugino and Higgs masses as free parameters

U(1)' gauge groups in GUT-inspired models:

 $E_6 \to SO(10) \times U(1)_{\psi} \quad , \quad SO(10) \to SU(5) \times U(1)_{\chi}$ $Z'(\theta) = Z'_{\psi} \cos \theta - Z'_{\chi} \sin \theta$ $E_6 \to SM \times U(1)_{\eta} \quad \theta = \arccos \sqrt{5/8} \; \Rightarrow \; Z'_{\eta}$

Orthogonal combination to Z'_{η} : $\theta = \arccos \sqrt{5/8} - \pi/2 \Rightarrow Z'_{I}$ Secluded model (singlet S): $\theta = \arctan(\sqrt{15}/9) - \pi/2 \Rightarrow Z'_{S}$ Representations of E_{6} , SO(10) and SU(5):

$$E_6$$
 : $27 = (Q, u^c, e^c, L, d^c, \nu^c, H, D^c, H^c, D, S^c)_L$

$$SU(5): \mathbf{10} = (Q, u^c, e^c), \mathbf{\overline{5}} = (L, d^c), \mathbf{1} = (\nu^c), \mathbf{\overline{5}} = (H, D^c), \mathbf{5} = (H^c, D), \mathbf{1} = (S^c)$$

"Conventional" SO(10) : $\mathbf{16} = (Q, u^c, e^c, L, d^c, \nu^c)$, $\mathbf{10} = (H, D^c, H^c, D)$, $\mathbf{1} = (S^c)$

"Unconventional" SO(10) : $\mathbf{16} = (Q, u^c, e^c, H, D^c, \nu^c), \mathbf{10} = (L, d^c, H^c, D), \ \mathbf{1} = (S^c)$

From conventional to unconventional SO(10) representations: $\theta \rightarrow \theta' - \arctan \sqrt{15}$

U(1)' coupling and charges in the conventional assignments:

			$2\sqrt{10} Q_{\chi}$	$2\sqrt{6} \ Q_{\psi}$	$2\sqrt{15} Q_{\eta}$
		Q	-1	1	2
		u^c	-1	1	2
Model	θ	d^c	3	1	-1
Z'_{χ}	$-\pi/2$	$\mid L$	3	1	-1
Z'_{ψ}	0	e^{c}	-1	1	2
Z'_n	$\arccos \sqrt{5/8}$	ν_e^c	-5	1	5
Z'_{T}	$\frac{\sqrt{5/8}}{\pi}$	H	-2	-2	-1
	$\frac{1}{\sqrt{15}} \frac{\pi}{2}$	H^c	2	-2	-4
Z_N	$\frac{\arctan \sqrt{10} - \pi/2}{(\sqrt{12}, \sqrt{0})}$	S^c	0	4	5
Z'_S	$\arctan(\sqrt{15/9}) - \pi/2$	D	2	-2	-4
		D^c	-2	-2	-1

$$g' = \sqrt{\frac{5}{3}}g_1 \; ; \; Q'(\Phi) = Q'_{\psi}(\Phi)\cos\theta - Q'_{\chi}(\Phi)\sin\theta$$

 $Q = (u \ d)_L$, $L = (e \ \nu_e)_L$, D: (s)quarks H: (s)leptons, S: singlet

Assumption: D and H are exotic quarks and leptons much heavier than the Z'

Minimal Supersymmetric Standard Model and U(1)'

The extra Z' requires a singlet Higgs to break U(1)' and get mass Higgs sector: h, H, A, H^{\pm} (MSSM) and a new scalar H'Three vacuum expectation values $v_1 < v_2 < v_3 \quad \tan \beta = v_2/v_1$ Gauginos: new \tilde{Z}' and \tilde{H}' lead to two new neutralinos, i.e. $\tilde{\chi}_1^0, \ldots \tilde{\chi}_6^0$ Chargino sector is unchanged, as the Z' is neutral New Z' decay modes besides the SM ones: $Z' \rightarrow \tilde{q}\tilde{q}^*, \ \tilde{\ell}^+\tilde{\ell}^-, \ \tilde{\nu}\tilde{\nu}^*, \ \tilde{\chi}_i^0\tilde{\chi}_j^0, \ \tilde{\chi}_{1,2}^+\tilde{\chi}_{1,2}^-, \ ZH, \ Zh, \ ZA, \ H^+H^-, \ hA, \ HA, \ WW$

Tree-level gaugino masses are obtained after diagonalizing the mass matrices in terms of the MSSM parameters M_1 , M_2 , M', $\tan\beta$, A_f , μ

Examples for pseudoscalar and charged Higgs and chargino masses:

$$m_{H^{\pm}}^{2} = \frac{2\sqrt{2}\mu A_{f}}{\sin 2\beta} + \left(1 - 4\frac{\mu^{2}}{g_{2}^{2}v_{3}^{2}}\right)m_{W}^{2} , \quad m_{A}^{2} = \frac{\sqrt{2}\mu A_{f}v_{3}}{\sin 2\beta}\left(1 + \frac{v_{1}^{2} + v_{2}^{2}}{4v_{3}^{2}}\sin^{2}2\beta\right)$$
$$m_{\tilde{\chi}^{\pm}_{1,2}}^{2} = \frac{1}{2}\left[|M_{2}|^{2} + |\mu|^{2} + 2m_{W}^{2} \mp \sqrt{(|M_{2}|^{2} + |\mu|^{2} + 2m_{W}^{2})^{2} - 4|\mu M_{2} - m_{W}^{2}\sin 2\beta|^{2}}\right]$$

Sfermion masses m_a^2 get D-terms like (m_0 soft mass at the Z' scale):

$$V(\phi, \phi^*) \sim \frac{1}{2} \sum_a g_a^2 (\phi^* T^a \phi)^2 \; ; \; m^2 = m_0^2 + \Delta m_D^2$$

First contribution (electroweak symmetry breaking):

$$\Delta \tilde{m}_a^2 = (T_{3,a}g_1^2 - Y_a g_2^2)(v_1^2 - v_2^2) = (T_{3,a} - Q_a \sin^2 \theta_W)m_Z^2 \cos 2\beta$$

Second contribution driven by the new U(1)' symmetry:

$$\begin{split} \Delta \tilde{m}_{a}^{\prime 2} &= \frac{g^{\prime 2}}{2} (Q_{1}^{\prime} v_{1}^{2} + Q_{2}^{\prime} v_{2}^{2} + Q_{3}^{\prime} v_{3}^{2}) \\ \mathcal{M}_{\tilde{f}}^{2} &= \begin{pmatrix} (M_{\mathrm{LL}}^{\tilde{f}})^{2} & (M_{\mathrm{LR}}^{\tilde{f}})^{2} \\ (M_{\mathrm{LR}}^{f})^{2} & (M_{\mathrm{RR}}^{f})^{2} \end{pmatrix} \\ (M_{\mathrm{LL}}^{\tilde{u}})^{2} &= (m_{\tilde{u}_{\mathrm{L}}}^{0})^{2} + m_{u}^{2} + \left(\frac{1}{2} - \frac{2}{3}x_{w}\right) m_{Z}^{2} \cos 2\beta + Q_{\tilde{u}_{\mathrm{L}}}^{\prime} \Delta \tilde{m}_{\tilde{u}_{L}}^{\prime 2} \\ (M_{\mathrm{RR}}^{\tilde{u}})^{2} &= (m_{\tilde{u}_{R}}^{0})^{2} + m_{u}^{2} + \left(\frac{1}{2} - \frac{2}{3}x_{w}\right) m_{Z}^{2} \cos 2\beta + Q_{\tilde{u}_{R}}^{\prime} \Delta \tilde{m}_{\tilde{u}_{R}}^{\prime 2} \\ (M_{\mathrm{LR}}^{\tilde{u}})^{2} &= m_{u} \left(A_{u} - \mu \cot \beta\right). \end{split}$$

Mass eigenstates $\tilde{u}_{1,2}$, $\tilde{d}_{1,2}$, $\tilde{\ell}_{1,2}$, $\tilde{\nu}_{1,2}$ – mixing term relevant only for stop quarks

Branching ratios into SM and BSM particles varying the Z' and slepton masses $\mu = 200$, $\tan \beta = 20$, $A_q = A_\ell = 500 \text{ GeV}$, $m_{\tilde{q}}^0 = 5 \text{ TeV}$, $M_1 = 150 \text{ GeV}$, $M_2 = 300 \text{ GeV}$, M' = 1 TeV $Z'_{\eta} \ (\theta \simeq 0.66)$:

$m_{Z'}$	$m_{ ilde{\ell}}^0$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{ u u}$	B_{WW}	B_{ZH}	$B_{\tilde{\chi}^+\tilde{\chi}^-}$	$B_{\tilde{\chi}^0\tilde{\chi}^0}$	$B_{\tilde{\nu}\tilde{\nu}^{*}}$	B _{SM}	B _{BSM}
1.0	0.8	39.45	5.24	27.26	3.01	2.91	4.92	8.64	8.54	71.96	28.04
1.0	0.9	43.14	5.73	29.81	3.30	3.18	5.38	9.45	0.00	78.68	21.32
2.0	1.5	37.97	4.91	25.54	2.66	2.64	5.33	10.33	10.61	68.42	31.58
2.0	1.8	42.47	5.49	28.57	2.98	2.95	5.96	11.56	0.00	76.54	23.46
3.0	2.2	37.60	4.84	25.17	2.59	2.59	5.38	10.61	11.14	67.60	32.40
3.0	2.6	42.31	5.45	28.32	2.92	2.91	6.06	11.94	0.00	76.08	23.92
4.0	2.9	37.41	4.81	25.00	2.56	2.56	5.39	10.70	11.38	67.22	32.78
4.0	3.5	42.22	5.43	28.21	2.89	2.89	6.08	12.07	0.00	75.85	24.15

$Z'_{\psi} (\theta = 0)$:

$m_{Z'}$	$m^0_{ ilde{\ell}}$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{\nu\nu}$	B_{WW}	B_{ZH}	$B_{\tilde{\chi}^+\tilde{\chi}^-}$	$B_{\tilde{\chi}^0\tilde{\chi}^0}$	$B_{\tilde{\nu}\tilde{\nu}^{\ast}}$	$B_{\tilde{\ell}\tilde{\ell}^*}$	B_{SM}	B _{BSM}
1.0	0.4	48.16	8.26	8.26	3.00	2.89	9.13	16.53	1.91	1.90	64.69	35.31
1.0	0.7	50.07	8.59	8.59	3.08	2.99	9.49	17.18	0.00	0.00	67.25	32.75
2.0	0.8	46.30	7.77	7.77	2.62	2.62	9.92	19.37	1.80	1.80	61.85	38.15
2.0	1.3	48.03	8.06	8.06	2.72	2.72	10.29	20.10	0.00	0.00	64.16	35.84
3.0	1.1	45.35	7.58	7.58	2.53	2.54	9.92	19.63	1.86	1.86	60.51	39.49
3.0	1.9	47.10	7.88	7.88	2.62	2.64	10.30	20.39	0.00	0.00	62.85	37.15
4.0	1.5	44.60	7.45	7.45	2.47	2.49	9.82	19.53	1.80	1.80	59.49	40.51
4.0	2.5	46.26	7.72	7.72	2.56	2.58	10.19	20.26	0.00	0.00	61.71	38.29
5.0	1.8	44.16	7.37	7.37	2.44	2.46	9.76	19.44	1.82	1.82	58.89	41.11
5.0	3.1	45.83	7.65	7.65	2.53	2.55	10.13	20.18	0.00	0.00	61.12	38.88

 $Z'_N \ (\theta \simeq -0.25)$:

$m_{Z'}$	$m^0_{ ilde{\ell}}$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{\nu\nu}$	B_{WW}	B_{ZH}	$B_{\tilde{\chi}^+\tilde{\chi}^-}$	$B_{ ilde{\chi}^0 ilde{\chi}^0}$	$B_{\tilde{\ell}\tilde{\ell}}$	B_{SM}	B_{BSM}
1.0	0.4	49.51	11.98	9.59	1.71	1.68	8.71	15.78	1.04	71.08	28.92
1.0	0.6	50.03	12.11	9.69	1.73	1.69	8.80	15.94	0.00	71.83	28.17
2.0	0.7	47.50	11.36	9.08	1.53	1.54	9.44	18.46	1.08	67.94	32.06
2.0	1.2	48.02	11.48	9.18	1.54	1.55	9.55	18.66	0.00	68.68	31.32
3.0	1.0	46.43	11.30	8.86	1.47	1.49	9.43	18.66	1.08	66.36	33.64
3.0	1.8	46.94	11.20	8.96	1.49	1.50	9.53	18.86	0.00	67.09	32.91
4.0	1.3	45.42	10.83	8.66	1.43	1.45	9.29	18.47	1.07	64.91	35.09
4.0	2.4	45.91	10.94	8.75	1.45	1.47	9.39	18.67	0.00	65.61	34.39
5.0	1.6	44.90	10.70	8.56	1.41	1.43	9.21	18.35	1.06	64.15	35.85
5.0	3.1	45.38	10.81	8.65	1.43	1.45	9.31	18.55	0.00	64.84	35.16

$Z_I' (\theta \simeq -0.91)$:

$m_{Z'}$	$m^0_{ ilde{\ell}}$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{ u u}$	$B_{H^+H^-}$	B_{WH}	B_{HA}	$B_{\tilde{\chi}+\tilde{\chi}-}$	$B_{\tilde{\chi}^0\tilde{\chi}^0}$	B _{SM}	B _{BSM}
1.0	1.0	44.06	14.69	29.37	0.00	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-4})$	4.31	7.58	88.11	11.89
1.5	1.0	43.39	14.46	28.93	0.00	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-4})$	4.56	8.65	86.78	13.22
2.0	1.0	43.16	14.38	28.77	0.00	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-3})$	4.65	9.03	86.31	13.69
2.5	1.0	42.99	14.33	28.66	0.06	$\mathcal{O}(10^{-3})$	0.07	4.68	9.19	85.98	14.02
3.0	1.0	42.53	14.18	28.36	0.53	$\mathcal{O}(10^{-3})$	0.53	4.66	9.20	85.07	14.93
3.5	1.0	42.16	14.05	28.11	0.91	$\mathcal{O}(10^{-3})$	0.92	4.64	9.19	84.33	15.67
4.0	1.0	41.90	13.96	27.93	1.20	$\mathcal{O}(10^{-3})$	1.21	4.62	9.17	83.79	16.21
4.5	1.0	41.70	13.90	27.80	1.40	$\mathcal{O}(10^{-3})$	1.41	4.61	9.16	83.40	16.60
5.0	1.0	41.56	13.85	27.71	1.56	0.01	1.57	4.60	9.15	83.12	16.88

 $Z_S^\prime~(\theta\simeq -1.16)$:

$m_{Z'}$	$m^0_{ ilde{\ell}}$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{ u u}$	B_{WW}	B_{ZH}	$B_{\tilde{\chi}^+\tilde{\chi}^-}$	$B_{\tilde{\chi}^0\tilde{\chi}^0}$	$B_{\tilde{\ell}\tilde{\ell}^*}$	$B_{\widetilde{q}\widetilde{q}^{*}}$	B _{SM}	B _{BSM}
1.0	0.2	42.29	13.70	34.57	0.15	0.14	3.33	5.75	0.07	0.00	90.56	9.44
2.0	0.2	41.67	13.48	34.02	0.14	0.14	3.57	6.90	0.08	0.00	89.17	10.82
3.0	0.2	41.25	13.34	33.66	0.14	0.14	3.58	7.06	0.08	0.00	88.25	11.75
4.0	0.2	40.81	13.20	33.30	0.14	0.14	3.56	7.07	0.08	0.00	87.30	12.70
5.0	0.2	37.34	12.07	30.46	0.13	0.13	3.27	6.50	0.07	7.97	79.87	20.12

 $Z'_{\chi} \ (\theta \simeq -1.57)$:

(unphysical sfermion spectrum)

$m_{Z'}$	$B_{qar{q}}$	$B_{\ell\ell}$	$B_{ u u}$	B_{WW}	$B_{H^+H^-}$	B_{ZH}	B_{HA}	B_{SM}	B_{BSM}
1.0	44.35	12.44	42.29	0.90	0.00	0.02	$\mathcal{O}(10^{-3})$	99.08	0.92
2.0	44.32	12.34	41.96	0.84	0.00	0.28	0.26	98.62	1.38
3.0	44.03	12.24	41.63	0.82	0.24	0.53	0.52	97.89	2.11
4.0	43.84	12.18	41.43	0.82	0.46	0.64	0.63	97.45	2.55
5.0	43.74	12.15	41.33	0.81	0.58	0.70	0.69	97.22	2.78

$Z'_{ m SSM}$: $g' = g_2/(2\cos\theta_W)$

$m_{Z'}$	$m_{ ilde{\ell}}^0$	B_q	B_ℓ	B_{ν}	B_{WW}	B_{HH}	B_{Zh}	B_{hA}	B_{ch}	B_{neu}	$B_{\tilde{\ell}}$	$B_{\tilde{\nu}}$	B_{SM}	B_{BSM}
1.0	0.1	29.6	3.9	7.7	5.6	0.0	0.0	0.0	18.3	29.3	1.9	3.8	41.2	58.8
1.0	0.5	31.4	4.1	8.2	5.9	0.0	0.0	0.0	19.4	31.1	0.0	0.0	43.6	56.4
1.5	0.1	27.4	3.5	7.0	4.9	0.9	0.9	0.8	17.8	32.5	1.7	3.5	37.9	62.1
1.5	0.7	28.9	3.7	7.4	5.1	0.0	0.9	0.8	18.8	34.3	0.0	0.0	40.0	60.0
2.0	0.1	26.2	3.4	6.7	4.6	0.0	1.9	1.8	17.4	33.0	1.7	3.3	36.3	63.7
2.0	1.0	27.6	3.5	7.0	4.8	0.0	2.0	1.9	18.3	34.7	0.0	0.0	38.2	61.8
2.5	0.1	25.4	3.3	6.5	4.4	0.9	2.6	2.5	16.9	32.8	1.6	3.2	35.1	64.9
2.5	1.2	26.6	3.4	6.8	4.6	0.9	2.7	2.7	17.8	34.4	0.0	0.0	36.8	63.2
3.0	0.1	24.8	3.2	6.3	4.2	1.7	3.0	2.9	16.6	32.5	1.6	3.1	34.3	65.7
3.0	1.5	26.0	1.7	6.6	4.5	1.8	3.1	3.1	17.4	34.1	0.0	0.0	36.0	64.0
3.5	0.1	24.4	3.1	6.2	4.2	2.3	3.2	3.2	16.4	32.3	1.6	3.1	33.7	66.2
3.5	1.7	25.6	1.4	6.5	4.4	2.4	3.4	3.3	17.2	33.9	0.0	0.0	35.4	64.6
4.0	0.1	24.2	3.1	6.1	4.1	2.6	3.4	3.4	16.3	32.2	1.5	3.1	33.4	66.6
4.0	2.0	25.3	1.2	6.4	4.3	2.8	3.6	3.5	17.1	33.7	0.0	0.0	35.0	65.0
4.5	0.1	24.0	3.1	6.1	4.1	2.9	3.5	3.5	16.2	32.1	1.5	3.0	33.2	66.8
4.5	2.2	25.1	1.1	6.4	4.3	3.0	3.7	3.7	17.0	33.6	0.0	0.0	34.8	65.2
5.0	0.1	23.9	3.0	6.1	4.1	3.1	3.6	3.6	16.1	32.0	1.5	3.0	33.0	67.0
5.0	2.5	25.0	1.0	6.4	4.2	3.3	3.8	3.7	16.9	33.5	0.0	0.0	34.6	65.4

Dependence of branching ratios on Z' and slepton masses

Branching Ratio

Production cross sections in pp collisions $q\bar{q} \rightarrow Z'$, LO pdf CTEQ6L

Expected event numbers (narrow width approximation):

$$\sigma(pp \to Z' \to f_1 f_2) \simeq \sigma(pp \to Z') \times BR(Z' \to f_1 f_2) ; N = \mathcal{L}\sigma$$

Cascade events: $N_{casc} = N(\tilde{\nu}\tilde{\nu}^*) + N(\tilde{\chi}^+\tilde{\chi}^-) + N(\tilde{\chi}^0\tilde{\chi}^0)$

Charged-slepton events: $N_{\rm slep} = N(\tilde{\ell}^+ \tilde{\ell}^-)$

$$\sqrt{s} = 8 \text{ TeV} \ \mathcal{L} = 20 \text{ fb}^{-1}$$

$$\sqrt{s} = 14 \text{ TeV} \ \mathcal{L} = 100 \text{ fb}^{-1}$$

Model	$m_{Z^{\prime}}^{}$ (TeV)	N_{casc}	N_{slep}
Z'_{η}	1.5	523	_
Z'_{η}	2.0	55	—
Z'_{ψ}	1.5	599	36
Z'_{ψ}	2.0	73	4
$Z'_{\rm N}$	1.5	400	17
$Z'_{\rm N}$	2.0	70	3
Z'_I	1.5	317	_
Z'_I	2.0	50	—
Z'_S	1.5	30	-
Z'_S	2.0	46	_
$Z'_{\rm SSM}$	1.5	2968	95
$Z'_{\rm SSM}$	2.0	462	14

Model	$m_{Z^{\prime}}^{}$ (TeV)	$N_{\rm casc}$	N_{slep}
Z'_{η}	1.5	13650	_
Z'_{η}	2.0	2344	-
Z'_{ψ}	1.5	10241	622
Z'_{ψ}	2.0	2784	162
$Z'_{\rm N}$	1.5	9979	414
$Z'_{\rm N}$	2.0	2705	104
Z'_I	1.5	8507	—
Z'_I	2.0	2230	—
Z'_S	1.5	8242	65
Z'_S	2.0	2146	16
$Z'_{\rm SSM}$	1.5	775715	24774
$Z'_{\rm SSM}$	2	19570	606

Conclusions and outlook

Novel investigation on Z' phenomenology in supersymmetry at the LHC

BSM modes decrease the SM rates and the Z' may set a constrain on sparticle invariant masses

Marrying U(1)' and MSSM: two extra neutralinos, one new neutral scalar Higgs, D-term contribution to sfermion masses

Studies of mass spectra, Z' branching ratios and production cross sections spanning the parameter space

BSM branching ratios 10-30% for U(1)' groups and up to 60% for SSM

Up to $\mathcal{O}(10^5)$ supersymmetric events with sleptons and gauginos in the high-luminosity phase of the LHC, especially for SSM

In progress:

Implementation of the U(1)'/MSSM models in HERWIG: parton showers, Z' width effects, hadronization and acceptance cuts on jets and leptons

Investigations of 'unconventional' E_6 scenarios

Revisiting the limits on the Z' mass

Representative Point:

$$\begin{array}{ll} \textbf{t:} & m_{Z'} = 3 \; \mathrm{TeV} \;, \; \theta = \theta_I = \arccos \sqrt{\frac{5}{8} - \frac{\pi}{2}} \\ \mu = 200 \;, \; \tan \beta = 20 \;, \; A_q = A_\ell = A_f = 500 \; \mathrm{GeV} \\ m_{\tilde{q}_L}^0 = m_{\tilde{q}_R}^0 = m_{\tilde{\ell}_L}^0 = m_{\tilde{\ell}_R}^0 = m_{\tilde{\nu}_L}^0 = m_{\tilde{\nu}_R}^0 = 2.5 \; \mathrm{TeV} \\ M_1 = 100 \; \mathrm{GeV} \;, \; M_2 = 200 \; \mathrm{GeV} \;, \; M' = 1 \; \mathrm{TeV} \end{array}$$

$m_{\tilde{u}_1}$	$m_{ ilde{u}_2}$	$m_{ ilde{d}_1}$	$m_{ ilde{d}_2}$	$m_{{\widetilde \ell}_1}$	$m_{\tilde{\ell}_2}$	$m_{\tilde{\nu}_1}$	$m_{\tilde{\nu}_2}$
2499.4	2499.7	2500.7	1323.1	3279.0	2500.4	3278.1	3279.1
$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{ ilde{\chi}_6^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\mp}}$
94.6	156.5	212.2	260.9	2541.4	3541.4	154.8	262.1
m_h	m_A	m_H	$m_{H'}$	$m_{H^{\pm}}$			
90.7	1190.7	1190.7	3000.0	1193.4			

Branching ratios in the Representative Point:

