Search for sterile neutrinos at a new Short-Baseline CERN neutrino beam

Nicoletta Mauri on behalf of the NESSiE Collaboration

INFN - LNF

XXIV Rencontres de Blois, 29th May 2012

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

Outline

- Why sterile neutrinos?
- 2 The physics case
 - SBL anomalies
 - Reactor and Gallium anomalies
- 3 The ultimate experiment
 - Detector concept
 - NESSIE

→ ∃ → -

The 3 neutrino oscillation paradigm

- The discovery of neutrino oscillations established the first piece of physics BSM: neutrinos have mass!
- Decades of experiments have drawn a picture consistent with the mixing of three active neutrinos, formalized by the PMNS unitary matrix

BUT

- a certain number of *anomalies* shows a tension with the 3 flavor framework, pointing towards a new parameter region $\Delta m^2 \sim eV^2$
- however, the Z invisible decay width measured at LEP bound $N_{active} = 3$ (active neutrinos with $m_{\nu} \lesssim M_Z/2$)
- the extraordinary consequence of a possible sterile neutrino discovery calls for a conclusive experimental search

イロト イヨト イヨト イヨト

Sterile neutrino

What is a sterile neutrino?

A sterile neutrino is a neutral lepton which does NOT couple to W/ZSterile neutrino is a "natural" consequence of neutrinos having non-zero mass, we do NOT need exotic particles!

SM naturally provides inactive $SU(2)_L$ singlets, with no "a priori" mass scale, that can mix with the active doublets

- minimal extensions of the SM introduce right-handed sterile ν_R with CP-conjugate ν_L^c
- no need to assume other New Physics BSM

To cope with experimental "anomalies", the new mass term should be small: $O(eV) \rightarrow light steriles!$

(日) (周) (三) (三)

Experimental tensions

Experimental tensions arise between the well established 3ν scenario and the recently observed "anomalies":

- $\bar{\nu}_e$ appearance signals
 - excess of $\bar{\nu}_e$ originated by initial $\bar{\nu}_{\mu}$: LSND/MiniBooNE but no ν_e excess signal from $\nu_\mu \rightarrow \nu_e$
- 2 $\bar{\nu}_e/\nu_e$ disappearance signals
 - deficit in the $\bar{\nu}_e$ fluxes from nuclear reactors
 - reduced ν_e event rate from MCi calibration sources in Gallium experiments

Also cosmological data (CMB and LSS observations) favor the existence of a 4th light degree of freedom

 $N_{eff} \sim 4 \longrightarrow$ preference for one light sterile neutrino

All these anomalies point towards the possible existence of (at least) one sterile neutrino driving oscillations in the $\Delta m^2 \sim 1 \; {
m eV}^2$ range

SBL anomalies

Appearance signals

LSND: first piece of evidence in favor of *beyond* 3ν oscillations (3.8 σ)

• appearance of $\bar{
u}_e$ from $\bar{
u}_\mu$, interpreted as oscillation with $\Delta m^2{\sim}1~{
m eV}^2$

MiniBooNE tested LSND parameter region

- (ν -mode) result: incompatible
- ($\bar{\nu}$ -mode) result: compatible

Black: LSND; Red: MiniBooNE

Allowed parameter space

Reactor and Gallium anomalies

Disappearance signals

- ~6% deficit in the $\bar{\nu}_e$ reactor rates, given the recent and carefully recomputed fluxes (3.0 σ)
- 5-20% deficit in the ν_e rates from intense calibration source in Gallium experiments (2.7 σ)

Combining Gallium and reactor anomalies: compatible phase space regions $\Delta m_{new}^2 \approx eV^2$, $\sin^2(2\theta_{new}) \approx 0.1$ arXiv:1101.2755v4

The ultimate experiment

Compelling question arised from the experimental hints: is there one (or more) sterile neutrino(s)? The experiment which may disentangle all the "anomalies"

(日) (周) (三) (三)

A new approach to sterile oscillations at CERN/SPS

A direct and unambiguous measurement of an oscillatory pattern requires necessarily the (simultaneous) observation at several different distances: the only way to identify both Δm^2 and $\sin^2(2\theta)$

ICARUS

Imaging detector capable to identify unambiguously ALL reaction channels with a LAr-TPC NESSiE

Magnetic spectrometers to determine muon charge and momentum

N. Mauri (INFN - LNF)

XXIV Rencontres de Blois

29 May 2012 9 / 19

Detector concept

NESSIE (Neutrino Experiment with SpectrometerS in Europe) Charge and momentum measurements in CC neutrino interactions

• Fundamental:

- measure precisely ν_{μ} disappearance in a wide energy range, a key (so far unknown) effect
- separate ν_{μ} from $\bar{\nu}_{\mu}$ in order to address CPV issues, especially in the $\bar{\nu}_{\mu}$ beam (thus reducing the data taking period)
- measure the neutrino flux at the Near detector, to keep systematics as low as possible
- $\bullet \ \ normalize \ \ NC/CC \ \ rates$

Challenging:

• find best compromise between active and passive materials

イロト 不得下 イヨト イヨト 二日

A new neutrino beam from the CERN-SPS

A new neutrino facility in the CERN North Area

• synergy between Short and Long Baseline projects

Primary beam: 100 GeV protons from SPS u-beam energy: $\sim 2 \text{ GeV}$ u-beam angle: pointing upwards $\sim 5 \text{ mrad slope}$

N. Mauri (INFN - LNF)

XXIV Rencontres de Blois

29 May 2012 11 / 19

NESSiE iron dipolar magnets

B = 1.5 T

12 12 / 19

NESSiE air magnet

Fully new concept of a 40 m² transverse area magnetic field in air (B = 0.25 T)

The air magnet single coil structure

Reconstruction capabilities with NESSiE

Demanding task: measure both charge and momentum over a large energy range

Complementarity of NESSiE spectrometers in the low (<1 GeV) and high energy domains

Transverse profile of the global magnetic field (air plus iron)

Two iron magnet arms (one iron magnet arm)

1.6

fensity, norm [T]

0.4

0.2

Physics reach: sensitivities to appearance anomalies

Expected sensitivity for the proposed experiment: ν_{μ} beam (left) and $\bar{\nu}_{\mu}$ beam (right) for 4.5×10^{19} p.o.t. (1 year) and 9.0×10^{19} p.o.t. (2 years) respectively

MiniBooNE anti-MiniBooNE (90%) 90% CL 99% CL Bugey CCFR CCFR _ KARMEN 10 10 Bugey LSND (99%) Δm² [eV²/c⁴] Δm² [eV²/c⁴] BNL 776 BNL 776 LSND (99%) LNSD (90%) LNSD (90%) 99% C. 99% C.L 90% C.L. 90% C.L. 0.1 0.1 2 LAr-TPC's @ CERN-SPS (1v) 2 LAr-TPC's @ CERN-SPS (2v) Neutrino Beam Anti Neutrino Beam 10-3 10'2 10^{-1} 104 10.3 10.5 10-1 10.4 sin²(20) sin²(20)

2 I Ar-TPC's at CERN-SPS

LSND allowed region is fully explored in both cases

< <>></>

N. Mauri (INFN - LNF)

Physics reach: sensitivities to disappearance anomalies

Expected sensitivity for 1 year ν_{μ} beam (4.5×10¹⁹ p.o.t.)

2 LAr-TPC's at CERN-SPS

Reactor and Gallium allowed region is fully explored

N. Mauri (INFN - LNF)

<≣>

Sensitivity to u_{μ} disappearance

NESSiE can disentangle ν_{μ} and $\bar{\nu}_{\mu}$

N. Mauri (INFN - LNF)

XXIV Rencontres de Blois

29 May 2012 17 / 19

Conclusions

- A number of experimental results appear anomalous in the context of the standard 3 neutrino framework, and can be explained by a sterile neutrino with mass around 1 eV
- The data collected to date present an incomplete, perhaps even contradictory picture
- A conclusive and complete test appear to be mandatory in order to confirm or refute the light sterile neutrino hypothesis: **the ultimate experiment**!
- The NESSiE spectrometers, complementing a LAr target experiment, will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the ν and $\bar{\nu}$ channels
- Definitive clarification of the physics issue:

bring anomalies to evidence or get rid of them

(日) (周) (三) (三)

Thank you for your attention!

N. Mauri (INFN - LNF)

XXIV Rencontres de Blois

3 29 May 2012 19 / 19

-

Image: A math a math