Results in T2K

Silvestro di Luise, ETH Zurich For the T2K collaboration

XXIV Rencontres de Blois, May 27th - June 1st 2012

neutrino oscillations as of early 2011

- flavor oscillation described by PNMS matrix
- parametrized by 3 mixing angles and CP-violating phase $\delta_{\mbox{\tiny CP}}$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

"atmospheric sector" θ₂₃ ν_μ disappearance (SuperK, K2K, MINOS) ν_τ appearance (OPERA, SuperK)

 $0.92 < \sin^2 2\theta_{23} < 1.0$ $2.3 \cdot 10^{-3} < \Delta m_{23}^2 (eV^2) < 2.56 \cdot 10^{-3}$ "solar sector"
 θ₁₂
v_e disappearance
 (SNO, KamLAND,
 SuperK and others)
 0.84<sin²2θ₁₂<0.89</pre>

 $7.38 \cdot 10^{-5} < \Delta m_{12}^2 (eV^2) < 7.80 \cdot 10^{-5}$

neutrino oscillations as of early 2011

- flavor oscillation described by PNMS matrix
- parametrized by 3 mixing angles and CP-violating phase $\delta_{_{CP}}$

neutrino oscillations: a year after

 $\geq 0_{13}$ has been well measured by different experiments

Interest now focused to the Mass Hierarchy determination & measurement of the CP phase

T2K: a Long Baseline neutrino experiment

 $\succ \text{Key Measurement:} \quad \begin{vmatrix} \text{observation of } v_{\mu} \rightarrow v_{e} \text{ oscillation} \\ (v_{e} \text{ appearance}) \end{vmatrix} \\ P(v_{\mu} \rightarrow v_{e}) \propto \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{23}^{2} L}{4E_{v}} \\ P(v_{\mu} \rightarrow v_{e}) - P(\overline{v_{\mu}} - \overline{v_{e}}) \propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta_{CP} \end{vmatrix}$

> Precise measurement of the vµ disappearance: $P(v_{\mu} \rightarrow v_{\mu}) \propto 1 - \sin^{2} 2\theta_{23} \sin^{2} \frac{\Delta m_{23}^{2} L}{4E_{\mu}}$

30 GeV proton beam

- Design power: 750 kW
- > Target: graphite, 90 cm long
- > 3 horns to focus positive π/K
- ➤ ~96 m decay pipe
- > Beam Dump to stop $h's/\mu's$
- Beam profile measured with punch through μ's (> 5 GeV/c) (MUMON)

Pulse-by-Pulse Muon Direction Measurements

Neutrino Beam Properties Measurements with INGRID arXiv:1111.3119 (2011) to be published in Nucl. Instr. Meth.

Magnet: fully refurbished from Cern/UA1 Water cooled Al coils.

0.2 T dipole field

Used in current analysis

• Fine Grain Detectors (x2) :

2.2 tons ν scintillator bars target

o Time Projection Chambers TPC's (x3):

< 10 % dE/dx resolution < 10% δp/p @ 1 GeV/c

Important for future analysis

- H₂O water target in the FGD
- POD π° detector
- Barrel and Downstream EM CALorimeters
- SMRD muon detectors in the magnet yoke

• SMRD muon detectors in the magnet yoke

 $\Delta T_0 = T_{GPS} @ SK - T_{GPS} @ J - PARC - TOF(\approx 985 \,\mu s)$

Oscillation Analysis Technique

- proton beam measurements
- horn current monitoring
- hadron production data (NA61+others)

ND280 Measurement

• inclusive v_{μ} CC measurement

output: $R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC}$

measure v_e rate as cross-check

Neutrino Cross Sections

- interaction models
- external cross section data

develop ν_e & ν_μ CCQE candidate selection

• predict # events using ND280 normalization: $N_{SK}^{exp} = R_{ND}^{\mu,Data} \times N_{SK}^{MC} / R_{ND}^{\mu,MC}$

Evaluate systematics

evaluate confidence intervals for data sample <u>Vµ→V</u>e sin²2ϑ₁₃single bin measurement (counting)

 $\underbrace{ V_{\mu} \rightarrow V_{\mu}}_{(sin^{2}2\vartheta_{23}, \Delta m^{2}_{23})}$ fit to data

v_e/v_μ event selection in T2K

Characterization of Signal and Background final states

<u>electrons</u>

EM shower Multiple Scattering

→ Ring has "fuzzy" edge electron is relativistic

 \rightarrow Opening angle is maximal

MC

вкд electrons

Beam intrinsic v_e (<1%) \rightarrow wider energy distrib. $\underline{\pi^{o's}}_{x}$ π^{0} $\overline{\chi_x}_{x}$ π^{0} $\overline{\chi_x}_{x}$ $\overline{\chi_x}_{x}$ EM showers of γ 's from π° can fake an electron

Oscillation Analysis: systematic errors

 $sin^{2}2\vartheta_{23}=1$, $\Delta m^{2}_{23}=2.4x10^{-3} eV^{2}$

	$\underline{v_{\mu}} \rightarrow \underline{v_{e}}$			$\underline{v_{\mu}} \rightarrow v_{\mu}$		
Error source	[%]			[2	[%]	
v Beam	+8.5	-8.5		+4.8	-4.8	
v cross section	+9.7	-9.7		+4.9	-4.5	
Final state interaction	+10.1	-10.1		+5.9	-5.9	
Super-K	+14.7	-14.7		+10.3	-10.3	
ND280 measurements	+6.2	-5.9		+6.1	-5.9	
Total	+22.8	-22.7		+15.1	-14.8	
for expected # of BKG v _e events for expected					v_{μ} events	

sin²2ϑ₁₃=0

Indication of ve appearance: <u>ve event selection in T2K</u>

- 121 events

8 events

7 events

6 events

6 events

6 events

- 88 events

selection criteria fixed before the analysis. Unbiased

- In the beam timing window.
 fully-contained in the inner detector (ID) no activity in the outer detector (OD)
- 2) Fiducial Volume cut
- 3) Single e-like ring
- 4) Visible Energy > 100 MeV
- 5) No decay electrons
- 6) π° mass cut Minv < 105 MeV/c²
- 7) Reconstructed v energy < 1250 MeV

Indication of ve appearance: <u>ve event selection in T2K</u>

selection criteria fixed before the analysis. Unbiased

- In the beam timing window.
 fully-contained in the inner detector (ID) no activity in the outer detector (OD)
- 2) Fiducial Volume cut
- 3) Single e-like ring
- 4) Visible Energy > 100 MeV
- 5) No decay electrons

1000

Reconstructed v energy (MeV)

Number of events /(250 MeV)

З

2

1

0

0

6) π° mass cut Minv < 105 MeV/c²

7

7) Reconstructed v energy < 1250 MeV

Data

v_e CC

NC

 $\sin^2 2\theta_{13} = 0.1$)

(MC w/

Reject beam

ve

2000

Osc. ve CC

3000

 $v_{\mu} + \overline{v}_{\mu} CC$

Indication of ve appearance: <u>ve event selection in T2K</u>

selection criteria fixed before the analysis. Unbiased

- In the beam timing window.
 fully-contained in the inner detector (ID) no activity in the outer detector (OD)
- 2) Fiducial Volume cut
- 3) Single e-like ring
- 4) Visible Energy > 100 MeV
- 5) No decay electrons
- 6) π° mass cut Minv < 105 MeV/c²
- 7) Reconstructed v energy < 1250 MeV

1.43 x 10²⁰ p.o.t.

- 121 events
- 88 events
- 8 events
- 7 events
- 6 events
- 6 events
- 6 events

Observed v_e events: 6 Expected Background events: $N_{SK}^{exp} = 1.5 \pm 0.3$ $N_{SK}^{exp} = N_{SKveSIG}^{exp}(\theta_{13}, \Delta m_{13}^2) + N_{SKveBEAM}^{exp} + N_{SK(v\mu+NC)}^{exp} + N_{SK(v_esolar)}^{exp}$ $1.5 = 0 \quad 0.8 \quad 0.6 \quad 0.1$

Indication of v_{e} appearance

0.2

0.3

 $\sin^2 2\theta_{13}$

0.1

0.5

0.6

0.4

Phys.Rev.Lett. 107:041801, 2011

0.1

0

0.2

0.3

 $\sin^2 2\theta_{13}$

0.4

0.5

0.6

if $\sin^2 2\theta_{13} = 0$, the probability to observe six or more candidate events is 0.7% for an expected background of 1.5±0.3 events (equivalent to 2.5 significance)

 \Rightarrow The best fit to $sin^2 2\vartheta_{13}$: $\Delta m^{2}_{23} > 0$ $\Delta m^{2}_{23} < 0$ Best fit: $sin^2 2\vartheta_{13} = 0.11$ Best fit: $sin^2 2\vartheta_{13} = 0.14$ $0.03 < sin^2 2\vartheta_{13} < 0.28 @ 90\% C.L.$ 0.04< *sin*²2ϑ₁₃ < 0.34 @ 90% C.L. $\sin^2 2\theta_{23} = 1$, $\Delta m^2_{23} = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$ Inverted $\Delta m_{23}^2 > 0$ hierarchy $\Delta m_{23}^2 < 0$ π/2 $\pi/2$ δ_{CP} $\delta_{\rm CP}$ est fit to T2K data T2K 3% CL $-\pi/2$ $-\pi/2$ 0% CL 1.43×10^{20} p.o.t. -π $-\pi 0^{-\pi}$

v_{μ} disappearance results

Phys.Rev.D 85 (2012) 03183

Good agreement with existing measurements

Conclusions

□ The experiment accumulated 2% of the planned data until the earthquake of March 2011

- We obtained
 - \succ the first indication of $v_{\mu} \rightarrow v_{e}$ appearance
 - > first measurement of $v_{\mu} \rightarrow v_{\mu}$ disappearance using off-axis v beam
- Data taking restarted in January 2012 double the statistics by summer 2012
- Thanks to the new knowledge of θ₁₃ focus is moving to the Mass Hierarchy determination & CPV measurement with long baseline accelerator experiments

Jan 2012. First T2K event since earthquake

v_{e} Candidate Events: Further Checks

Osc. v CC

+V CC

0.5

0 $\cos\theta_{\text{beam}}$

v., CC NC

(MC w/ $sin^2 2\theta_{13} = 0.1$)

з

2

Number of events

beam direction

- Vertex Distribution Events are clustered at large R
 - Only one event outside the FV which passed -0.5 all the other cuts: in the presence of beam related bkg from outside the FV more events are expected in this region
 - Kolmogorov-Smirnov test on the R² distrib.: p-value is 0.03

v_e Candidate Events: Further Checks

Vertex Distribution

distributions along the beam direction are consistent with the MC

v_e Candidate Events: Further Checks

Vertex Distribution

Outer Detector events show no indication of contamination from outside Inner Detector

3.2x10⁻³ expected events from outside ID with FV cut

Indication of ve appearance: expected ve events $N_{SK}^{exp} = N_{SKveSIG}^{exp} \left(\theta_{13}, \Delta m_{13}^{2}\right) + N_{SKveBEAM}^{exp} + N_{SK(v\mu+NC)}^{exp} + N_{SK(v_{e}solar)}^{exp} + N_{SK}^{exp} + N_{SK$

ND280 statistical uncertainty

Flux uncertainty \rightarrow expect cancellation in ratio

Neutrino interaction cross section uncertainties

SK reconstruction, selection uncertainties

ND280 reconstruction, selection uncertainties

Indication of ve appearance: expected ve events

• After ve selection Criteria in SK (shown further)

$$Ns\kappa = 1.5 \pm 0.3$$

$$N_{SK}^{\exp} = N_{SKveSIG}^{\exp} \left(\theta_{13}, \Delta m_{13}^2 \right) + N_{SKveBEAM}^{\exp} + N_{SK(v\mu+NC)}^{\exp} + N_{SK(v_esolar)}^{\exp}$$

1.5 = 0 0.8 0.6 0.1

Summary of v x-section Uncertainties on N^{exp}_{SK} for $sin^2 2\theta_{13} = 0$

Error source	syst. error on N_{SK}^{exp}	
CC QE shape	3.1%	
CC 1π	2.2%	
CC Coherent π	3.1%	
CC Other	4.4%	
NC $1\pi^0$	5.3%	
NC Coherent π	2.3%	
NC Other	2.3%	
$\sigma(\nu_e)$	3.4%	Pion final state
FSI	10.1% -	interactions
Total	14.0%	dominate

The total uncertainty on N^{exp}_{SK} due to the v x-section uncertainty is 14% ($\sin^2 2\theta_{13} = 0$)

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) & \theta_{13} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} & \mathsf{CPC} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} & \mathsf{CPV} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} & \mathsf{Solar} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) & \mathsf{Matter effect} \\ &(\mathsf{small in T2K}) \end{split}$$

a → -a,
$$\delta$$
 → - δ for P(\overline{v}_{μ} → \overline{v}_{e})
L=295km, v> ~0.6GeV $a = 7.56 \times 10^{-5} [eV^{2}] \cdot \left(\frac{\rho}{[g/cm^{3}]}\right) \cdot \left(\frac{E}{[GeV]}\right)$