Search for CP violation in the charm sector at LHCb

Matt Coombes

on behalf of the LHCb collaboration

$$
29 / 05 / 2012
$$

Rencontres de Blois

Charm physics at LHCb

D0 mixing
y_{CP} and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
D^{0} mixing

Outlook

First evidence for CPV in charm sector at LHCb
Other searches for CPV at LHCb

Charm physics at LHCb

$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Why LHCb?

- Alvaro talked about B-physics at LHCb. LHCb also has large charm physics program
- LHCb has huge charm samples. Charm cross section $\approx 20 \times b$ cross section within the LHCb acceptance:
- $\sigma(c c)$ LHCb $=1742 \pm 267 \mu b$ (LHCb-CONF-2010-013),
- $\sigma(\mathrm{bb}) \mathrm{LHCb}=75.3 \pm 5.4 \pm 13.0 \mu \mathrm{~b}$ (Phys.Lett.B694, 209).
- In $1 \mathrm{fb}^{-1}$ roughly $10^{12} \mathrm{c} \overline{\mathrm{c}}$ and $10^{11} \mathrm{~b} \overline{\mathrm{~b}}$ produced!
- LHCb can make precision measurements in charm and study loopsensitive processes.
- These measurements include searches for CPV.
- Theory calculations are difficult in charm
- Use to be a clean prediction of $\mathrm{CPV}<\mathcal{O}\left(10^{-3}\right)$
- Recently effects of a few $\mathcal{O}\left(10^{-3}\right)$ could be possible in SM
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
D^{0} mixing
- Observed in 2007 by BaBar and Belle
[arXiv:hep--ex/0703020; arXiv:hep--ex/0703036]
$\cdot>10 \sigma$ in HFAG average, but no single $>5 \sigma$ measurement

Mixing via box-diagram
Short range

Mixes via hadronic intermediate states Long range

Time-evolution described by Schrödinger equation:

$$
i \frac{\partial}{\partial t}\binom{D^{0}(t)}{\bar{D}^{0}(t)}=(M-i \Gamma)\binom{D^{0}(t)}{\bar{D}^{0}(t)}
$$

Mass eigenstates are $\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$
Size of mixing characterised by $x=\frac{m_{2}-m_{1}}{\Gamma}, \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}$
Mixing if $x \neq 0$ or $y \neq 0$
CPV if $|\mathrm{q} / \mathrm{p}| \neq 1$ or $\arg (\mathrm{q} / \mathrm{p}) \neq 0$

Charm physics at LHCb

D0 mixing
$\mathrm{ycP}_{\text {c }}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

World average time dependent CPV and mixing

No mixing ruled out at $>10 \sigma$

No CPV if $|\mathbf{q} / \mathbf{p}| \neq 1$ or $\arg (\mathrm{q} / \mathrm{p}) \neq 0$

At this stage no evidence for CPV in mixing in charm sector in two-body charm decays

JHEP 1204 (2012) 129

$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Two-body mixing and CPV

Compare lifetimes of non-eigenstate decay $D^{0} \rightarrow K^{-} \pi^{+}$and CP even decays $D^{0} \rightarrow K^{+} K^{-}\left(\pi^{+} \pi^{-}\right)$

$$
\begin{aligned}
y_{C P} & \equiv \frac{\tau\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}{\tau\left(D^{0} \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}\right)}-1 \\
& =y \cos \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) x \sin \phi
\end{aligned}
$$

If no CPV $\quad y_{C P}=y$
Tagging the D^{0} flavour using the slow pion from the D^{*+},

$$
D^{*+} \rightarrow D^{0}(f) \pi_{s}^{+} \quad \text { or } \quad D^{*-} \rightarrow \bar{D}^{0}(f) \pi_{s}^{-}
$$

allows us to define:

$$
\begin{aligned}
A_{\Gamma} & \equiv \frac{\tau\left(\overline{D^{0}} \rightarrow K^{-} K^{+}\right)-\tau\left(D^{0} \rightarrow K^{-} K^{+}\right)}{\tau\left(\overline{D^{0}} \rightarrow K^{-} K^{+}\right)+\tau\left(D^{0} \rightarrow K^{-} K^{+}\right)} \\
& \approx \frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-x \sin \phi
\end{aligned}
$$

$A_{\ulcorner }$sensitive to $C P V$ in mixing $(|q / p| \neq 1)$

Charm physics at LHCb

D0 mixing
$\underline{\mathrm{y}_{\mathrm{CP}} \text { and } \mathrm{A}_{\Gamma}}$
Direct CPV
$\Delta \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
$y_{C P}$ and A_{Γ} at LHCb

$$
D^{*+} \rightarrow D^{0}\left(K^{-} K^{+}\right) \pi_{s}^{+}
$$

39 K candidates with $29 \mathrm{pb}^{-1}$
$D^{*+} \rightarrow D^{0}\left(K^{-} \pi^{+}\right) \pi_{s}^{+}$

286 K candidates with $29 \mathrm{pb}^{-1}$

the charm at LHCb

Charm physics at LHCb

D0 mixing
$\underline{\mathrm{y}_{\mathrm{CP}} \text { and } \mathrm{A}_{\Gamma}}$

Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

LHCh
$y_{C P}$ and A_{Γ} at LHCb

$$
y_{C P}=(0.55 \pm 0.63 \pm 0.41) \%
$$

$$
A_{\Gamma}=(-0.59 \pm 0.59 \pm 0.21) \%
$$

Performed on $29 \mathrm{pb}^{-1}$ update on $1 \mathrm{fb}^{-1}$ in progress Update with more data and improved systematics

$$
\Delta \mathrm{A}_{\mathrm{cp}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}-\mathrm{K}^{+}-\mathrm{D}^{0} \rightarrow \pi \cdot \pi^{+}\right)
$$

Phys. Rev. Lett. 108 (2012) 111602

```
ycp and }\mp@subsup{\textrm{A}}{\Gamma}{
```

Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

Direct CPV in Singly Cabibbo Suppressed Decays

Time-integrated CP asymmetry defined as:

$$
A_{C P}(f)=\frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(\bar{D} \rightarrow f)+\Gamma(D \rightarrow \bar{f})}
$$

SM predictions do not rule out a few 10^{-3}
NP could enhance up to $\mathcal{O}\left(10^{-2}\right)$
LHCb study final state $\mathrm{f}: \pi^{-} \pi^{+}$or $K^{-} K^{+}$
D^{0} flavour determined by the sign of the slow pion in decay:

$$
D^{*+} \rightarrow D^{0}(f) \pi_{s}^{+} \quad \text { or } \quad D^{*-} \rightarrow \overline{D^{0}}(f) \pi_{s}^{-}
$$

$\triangle \mathrm{Acp}$

$$
A_{R A W}(f)=A_{C P}(f)+A_{D}(f)+A_{D}\left(\pi_{s}^{+}\right)+\left(A_{p}\left(D^{*+}\right)\right)
$$

| f's detection |
| :---: | :---: |
| asymmetry | | π_{s} detection |
| :---: |
| asymmetry | | Production |
| :--- |
| asymmetry |

Charm physics at LHCb

D0 mixing
ycp and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$

$$
\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}
$$

$\triangle A c p$

$\triangle A c p$

$$
A_{R A W}(f)=A_{C P}(f)+A_{I}(f)+A_{D}\left(\pi_{s}^{+}\right)+A_{p}\left(D^{*+}\right)
$$

$$
\begin{gathered}
\pi_{\mathrm{s}} \text { detection } \\
\text { asymmetry }
\end{gathered} \begin{aligned}
& \text { Production } \\
& \text { asymmetry }
\end{aligned}
$$

Taking $A_{R A W}(f)-A_{R A W}\left(f^{\prime}\right)$ the production and slow pion detection asymmetries will cancel

$$
A_{R A W}\left(K^{-} K^{+}\right)-A_{R A W}\left(\pi^{-} \pi^{+}\right)=A_{C P}\left(K^{-} K^{+}\right)-A_{C P}\left(\pi^{-} \pi^{+}\right) \equiv \Delta A_{C P}
$$

- Indirect and direct CPV can contribute Phys.Rev. D80 (2009) 076008
- Indirect CPV is \sim universal $=>$ cancels in $A\left(K^{+} K^{-}\right)-A\left(\pi^{+} \pi^{-}\right)$
- If lifetime acceptance same for $K K$ and $\pi \pi$
- If not contribution $A^{\text {ind }}\left[\left\langle t_{k K}\right\rangle-\left\langle t_{\pi \pi}\right\rangle\right] / \tau_{0}$
$y_{c P}$ and A_{Γ}

Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
$\triangle A c p$
－Magnetic field induces left／ right differences between the D^{*+} and D^{*-} due to the slow pion
－Acceptance effect at edges of detector
－Beam－pipe shadow
－We remove this asymmetry
－We remove areas of large asymmetry to avoid secondary effects
－Frequently flip the magnetic field
－Detector asymmetries removed in difference between RAW asymmetries

Beam－pipe shadow
$y_{C P}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
$\triangle A c p$

- Magnetic field induces left/ right differences between the D^{*+} and D^{*} due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

Beam-pipe shadow
$\triangle A c p$

- Magnetic field induces left/ right differences between the D^{*+} and D^{*-} due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

$\mathrm{ycp}_{\text {cp }}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
$\triangle A c p$

K-K+ Yield: $(1436 \pm 2) \times 10^{3}$

$\pi \cdot \pi^{+}$Yield: $(381 \pm 1) \times 10^{3}$

$$
\Delta A_{C P}=(-0.82 \pm 0.21 \pm 0.11) \%
$$

First evidence of CP violation in charm with significance 3.5σ Carried out on $0.6 \mathrm{fb}^{-1}$

Phys. Rev. Lett. 108 (2012) 111602
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Cross－checks

Many cross－checks performed，e．g：
－Stability of result vs data taking runs
－Stability vs D＊Pt
－Stability vs D＊ETA
－Consistency between subsamples （field up／field down，etc）

Matt Coombes Search for CPV in the charm at LHCb

Charm physics at LHCb

D0 mixing
y_{CP} and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
\triangle Acp Result

World average

Includes CDF result $\Delta A_{C P}=(-0.62 \pm 0.21 \pm 0.10) \%$
Many Interpretations. See:
arXiv:1202.2866v2
Isidori, Kamenik, Ligeti, Perez (arXiv:1111.4987)
Brod, Kagan, Zupan (arXiv:1111.5000)
Cheng, Chaing (arXiv:1201.0785)
Pirtskhalava, Uttayarat (arXiv:1112.5451)
Bhattacharya, Gronau, Rosner (arXiv:1201.2351)
Feldmann, Nandi, Soni (arXiv:1202.3795)

Search for CP violation in $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$decays
 Phys. Rev. D 84 (2011) 112008

Model-independent searches for CPV in multi-body decays

Search for direct CP violation in three-body decays

Look for CPV in SCS decay $D^{+} \rightarrow K^{+} K^{-} \pi^{+}$

Search for local asymmetries across Dalitz space

Model independent method based on binning Dalitz plot and
 comparing corresponding bins

Model－independent searches for CPV in multi－body decays

Bin Dalitz space and compare bins between D^{-}and D^{+}Dalitz space

Based on the Miranda method
（Bediaga et al，Phys．Rev．D80：096006，2009）
$S_{C P}=\frac{N_{i}-\alpha \bar{N}_{i}}{\sqrt{N_{i}+\alpha^{2} \bar{N}_{i}}} \quad \alpha=\frac{N_{\text {total }}}{\bar{N}_{\text {total }}}$

Phys．Rev．D 84 （2011） 112008
α normalise away overall asymmetry，but also removes production and detection effects

Plotting for all bins：if NO CPV Gaussian with $\mu=0$ ；$\sigma=1$
Calculate $\chi^{2}=\sum\left(S_{C P}^{i}\right)^{2}$ and p－values under assumption of no CPV

Simulation by Bediaga et al，Phys．Rev．D80：096006，2009

Matt Coombes Search for CPV in the charm at LHCb

Model-independent searches for CPV in multi-body decays

Use CF where NO CPV expected to check for detector asymmetries
Yields for $35 \mathrm{pb}^{-1}$

$\Delta \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Model－independent searches for CPV in multi－body decays

Several binnings used

All consistent with no CPV．Binning shown agrees with hypothesis of no CPV with a p－value of 10.6%

Outlook

－First evidence of CPV in charm sector observed
－Exciting result
－Open to discussion and interpretation
－Huge amounts of data available at LHCb will help us understand CPV in charm
－More precision measurements being carried out to help understand this result
－Lots more for LHCb to contribute to charm physics：
－Forthcoming analysis with $1 \mathrm{fb}^{-1}$ from 2011 running
－Charm sample more than double with 2012 data
－ 2012 is going to be golden year for charm physics at LHCb

Matt Coombes

$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
$\underline{\text { Outlook }}$

LHCb
 22 BRISTOL

Matt Coombes Search for CPV in the charm at LHCb

Charm physics at LHCb

D0 mixing
y_{CP} and A_{Γ}

Direct CPV

Outlook

```
\(\triangle \mathrm{Acp}\)
\(\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}\)
Direct CPV
```

2010: $38 \mathrm{pb}^{-1}$

Data taking at LHCb

LHCb Integrated Luminosity at 3.5 TeV in 2011

201 $\mathrm{I}_{\mathrm{l}}^{\mathrm{lfb}}{ }^{-1}$

Charm physics at LHCb

D0 mixing
$\underline{\mathrm{y}_{\mathrm{CP}} \text { and } \mathrm{A}_{\Gamma}}$

Direct CPV
$\Delta \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Lifetime dependence measurements of charm
(a)

Want to measure how acceptance varies with lifetime for each candidate

By shifting PV for each candidate we evaluate the trigger decision for each possible lifetime of each decay
(c)

(b)

(d)

$y_{c p}$ and A_{Γ} at LHCb

 Improving systematics for 2011$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

- Dominant uncertainties from the background
- Statistical component in secondary charm uncertainty will improve with more data from 2011
- Easier to control background in 2011 data with improved triggers.

Table 1: Summary of systematic uncertainties.

Effect	$y_{C P}\left(10^{-3}\right)$
VELO length scale	negligible
Turning point bias	± 0.1
Turning point scaling	± 0.1
Combinatorial background	± 0.8
Proper-time resolution	± 0.1
Minimum proper-time cut	± 0.8
Maximum proper-time cut	± 0.2
Secondary charm background	± 3.9
Total	± 4.1

\triangle Acp RAW asymmetries

Charm physics at LHCb

D0 mixing
$\mathrm{ycp}_{\mathrm{CP}}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

LHCb

警
magnetic field up polarity

magnetic field down polarity

Matt Coombes Search for CPV in the charm at LHCb
$\triangle A c p$ Result

Charm physics at LHCb

D0 mixing
y_{CP} and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
Outlook

Before this measurement

Before this measurement Superimposing the LHCb result

Matt Coombes Search for CPV in the charm at LHCb

$\triangle A c p$ Result

Charm physics at LHCb

D0 mixing
y_{CP} and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

Average including LHCb's result

Charm physics at LHCb

D0 mixing
$\mathrm{ycP}_{\mathrm{CP}}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

Result

- Acp from direct CPV and indirect CPV
- Slanted constraints from different lifetime acceptances for KK and $\pi \pi$
- Consistency with no CPV hypothesis: 6×10^{-5}

Matt Coombes Search for CPV in the charm at LHCb

Model-independent searches for CPV in multi-body decays

Additional binnings

p-value
12.7\%

Charm physics at LHCb

D0 mixing
$y_{c P}$ and A_{Γ}
Direct CPV
$\triangle \mathrm{Acp}$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Outlook

LHCh
追 University of 22 BRISTOL

