Rencontres de Blois 2012

CKM Related Measurements

Jeremy Dalseno

Max-Planck-Institut für Physik

jdalseno [@] mpp.mpg.de

29 May 2012

Outline

1. $B^0 \rightarrow (c\bar{c}) K^0$

2. $B^0 \to D^+ D^-$, $B^0 \to D^{*\pm} D^{\mp}$, $B^0 \to D^{*+} D^{*-}$

3. $B^0 \to a_1(1260)^{\pm} \pi^{\mp}$

4. V_{ub}

$B^0 \to (c\bar{c}) K^0$

Provides a theoretically and experimentally clean measurement of $\sin 2\phi_1$

Final results from the B factories on golden channels including $B^0 \to J/\psi \, K^0$

Belle: PRL 108, 171802 (2012)

World's most precise measurements from the B factories: $-\eta_{CP}S_{CP} = +0.679 \pm 0.020$

$B^0 \rightarrow D^+ D^-$

Sensitive to ϕ_1 , presence of penguin contribution gives possibility of direct CP violation

Final result from Belle, neural networks used to provide better discrimation against continuum Belle: PRD 85, 091106 (2012)

B factories in agreement and consistent with \mathcal{S}_{CP} from $B^0 \to (c\bar{c}) K^0$

$B^0 \to D^{*\pm} D^{\mp}$

Flavour non-specific final state, need to consider 4 flavour-charge configurations (q, c)

 $\mathcal{P}(\Delta t, q, c) = (1 + c\mathcal{A}_{CP}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{8\tau_{B^0}} \left\{ 1 + q \left[(\mathcal{S}_{CP} + c\Delta \mathcal{S}) \sin \Delta m_d \Delta t - (\mathcal{C}_{CP} + c\Delta \mathcal{C}) \cos \Delta m_d \Delta t \right] \right\}$ Belle: PRD 85, 091106 (2012)

 \mathcal{A}_{CP} : Time and flavour-integrated direct CP violation

 \mathcal{C}_{CP} : Flavour-dependent direct CP violation

 \mathcal{S}_{CP} : Mixing-induced CP violation

 ΔC : Rate asymmetry between configurations where D^* does not and does contain the spectator quark

 $\Delta \mathcal{S}$: Strong phase difference between configurations where D^* does not and does contain the spectator quark

 B^0 Tag $\bar{\mathrm{B}}^{0}$ Tag Events / 1.0 ps 40 30 20 10 Raw asymmetry 0.8 0.4-0.4 $^{-2}$ 2 -40 (b) ∆t (ps)

 $C_{CP} = -0.01 \pm 0.11 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $S_{CP} = -0.78 \pm 0.15 \text{ (stat)} \pm 0.05 \text{ (syst)}$

B factories in agreement and consistent with \mathcal{S}_{CP} from $B^0 \to (c\bar{c}) K^0$

 ${\cal CP}$ composition depends on polarisation of the final state

Decompose definite CP states with angular analysis in transversity basis

Benefits from new tracking algorithm

 $\rightarrow D^{*+}D$

*-

B factories in agreement and consistent with \mathcal{S}_{CP} from $B^0 \to (c\bar{c}) K^0$

$B^0 \to a_1(1260)^{\pm} \pi^{\mp}$

 $b \rightarrow u \bar{u} d$ transition, sensitive to ϕ_2

Reconstructed in 4 charged pion final state

Difficulties from huge continuum background and other 4 pion backgrounds

Extract branching fraction from 4 discriminating variables

$$B^0 \to a_1(1260)^{\pm} \pi^{\mp}$$

Flavour non-specific final state, need to consider 4 flavour-charge configurations (q, c)

 $\mathcal{P}(\Delta t, q, c) = (1 + c\mathcal{A}_{CP}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{8\tau_{B^0}} \left\{ 1 + q \left[(\mathcal{S}_{CP} + c\Delta \mathcal{S}) \sin \Delta m_d \Delta t - (\mathcal{C}_{CP} + c\Delta \mathcal{C}) \cos \Delta m_d \Delta t \right] \right\}$

 \mathcal{A}_{CP} : Time and flavour-integrated direct CP violation

 \mathcal{C}_{CP} : Flavour-dependent direct CP violation

 \mathcal{S}_{CP} : Mixing-induced CP violation

 ΔC : Rate asymmetry between configurations where a_1 does not and does contain the spectator quark

 ΔS : Strong phase difference between configurations where a_1 does not and does contain the spectator quark

 $S_{CP} = -0.51 \pm 0.14$ (stat) ± 0.08 (syst)

 3.1σ evidence for mixing-induced CP violation

Recover ϕ_2 with isospin pentagon analysis

M. Gronau and D. London, PRL 65 3381 (1990)

Or estimate bounds on $|\Delta\phi_2|$ with SU(3) flavour symmetry

M. Gronau and J. Zupan, PRD 73 057502 (2006)

 $B \to \pi \pi$, $\rho \rho$ system

- ϕ_2 constrained with isospin analysis
- Up to isospin breaking effects
 - No penguin in A_{+0}

8-fold ambiguity in ϕ_2

 $B\to\rho\pi~{\rm system}$

 ϕ_2 directly constrained with Dalitz plot fit

Single solution for ϕ_2

 $B \to \rho \rho$ system gives tightest ϕ_2 constraint

Due to relatively flat isospin triangles

 V_{ub} the least known CKM element

$$\frac{d\Gamma}{dq}(\bar{B} \to X_u l\bar{\nu}_l) = \frac{G_F^2}{24\pi^3} p_{X_u}^3 |V_{ub}|^2 |f_+(q^2)|^2$$

Improved tag-side reconstructing with Neural Networks

Extract signal yield from missing mass squared distribution

Belle: Preliminary

Updated Belle measurements give the most precise branching fractions with hadronic tag

$$|V_{ub}| = \sqrt{\frac{C_{\nu}\mathcal{B}}{\tau_B\zeta}}$$

 $C_{\nu}=2$ for B^+ , $C_{\nu}=1$ for B^0

 $\zeta = \int d\Gamma/|V_{ub}|^2$ form factors estimated from various theoretical models

Models for estimating ζ

[1] KMOW, PRD 83 094031 (2011)

[2] Ball/Zwicky, PRD 71 014015 (2005)

[3] FNAL, NPPS 140 461 (2006)

[4] HPQCD, PRD 73 074502 (2005)

Blue: Stat, Red: Stat \oplus Syst, Green: Stat \oplus Syst \oplus Model

Performing $\left| V_{ub} \right|$ extraction in bins of q^2 reduces model dependence

Fit data & theory from $q^2 \ {\rm distribution}$

2-3 shape parameters and $\left|V_{ub}\right|$, include data & LQCD correlations

Not a fit, but plots show compatibility of q^2 data with various model expectations

Tension between exclusive and inclusive V_{ub} determinations

Summary

Many final results from Belle

 ϕ_1 : Most precise measurements on Golden Channel and $b \to c \bar c d$ transitions

 $\phi_2 :$ First evidence of CP violation in $B^0 \to a_1(1260)^\pm \, \pi^\mp$

 V_{ub} : Most precise branching fraction measurements of $\bar{B} \to X_u l \bar{\nu}_l$ channels

More final results on ϕ_2 and ϕ_3 expected soon

Standard Model confirmed to $\mathcal{O}(10\%)$

$$\phi_{1} = (21.4 \pm 0.8)^{\circ}$$

$$\phi_{2} = (88.7^{+4.6}_{-4.2})^{\circ}$$

$$\phi_{3} = (66 \pm 12)^{\circ}$$

$$|V_{cb}| = (41.9 \pm 0.7) \times 10^{-3} \text{ (incl)}$$

$$|V_{cb}| = (39.6 \pm 0.9) \times 10^{-3} \text{ (excl)}$$

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3} \text{ (incl)}$$

$$|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3} \text{ (excl)}$$

ϕ_3 With GLW

Interference between the dominant $b\to c\bar{u}s$ with the corresponding DCS $b\to u\bar{c}s$

Relative magnitude and strong phase between suppressed and favoured amplitude: r_B , δ_B GLW method: $D^{(*)}$ decays to CP-even $(D_{CP+}^{(*)})$ and CP-odd $(D_{CP-}^{(*)})$ eigenstates

Measured observables

$$R_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to]\bar{D}^0K^+)}$$
$$A_{CP\pm} = \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}$$

Relationship between observables constrain ϕ_3

 $CP \text{-even } D_{CP+} \text{ decays} \qquad CP \text{-odd } D_{CP-} \text{ decays}$ $R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \phi_3 \qquad R_{CP-} = 1 + r_B^2 - 2r_B \cos \delta_B \cos \phi_3$ $A_{CP+} = \frac{2r_B \sin \delta_B \sin \phi_3}{1 + r_B^2 + 2r_B \cos \delta_B \cos \phi_3} \qquad A_{CP-} = \frac{-2r_B \sin \delta_B \sin \phi_3}{1 + r_B^2 - 2r_B \cos \delta_B \cos \phi_3}$

ϕ_3 With GLW

Interference between the dominant $b\to c\bar{u}s$ with the corresponding DCS $b\to u\bar{c}s$

Relationship between observables constrain ϕ_3

ϕ_3 With GLW

	A	CP	A	V	era	ag	es		H Mori PREI	FA ond 20	G 012 ARY
D _{CP} K A _{CP+}	BaBar	!	:		+	4	0	.25 ±	± 0.0	6 ± 0	0.02
	Belle					r-I	0	.29 ±	E 0.0	6 ± 0	.02
	ÇDF				-	*	→ 0	.39 ±	± 0.1	7 ± 0	.04
	LHCb				H K		0	.14 ±	E 0.0	3 ± 0	0.01
	Average								0.1	9 ± 0	.03
D _{CP} K A _{CP-}	BaBar				L		-0	.09 ±	E 0.0	7 ± 0	.02
	Belle		-				-0	.12 ±	± 0.0	6 ± 0	0.01
	Average								-0.1	1 ± 0	.05
P+ D* _{CP} K A _{CP}	BaBar						-0	.11 ±	± 0.0	9 ± 0	0.01
	Belle			+			-0	.20 ±	E 0.2	2 ± 0	.04
	Average		*						-0.1	2 ± 0	80.0
	BaBar						0	.06 ±	± 0.1	0 ± 0	.02
	Belle		p	ž	*	+	0	.13 ±	± 0.3	0 ± 0	.08
	Average				(d) ric				0.0	7 ± 0	.10
* A _{GP} K* A _G	BaBar			5			0	.09 ±	± 0.1	3 ± 0	.06
	Average			느	udi				0.0	9 ± 0	.14
	BaBar	D V	¥ 9	-			-0	.23 ±	± 0.2	1 ± 0	0.07
ک ب	Average	1	★ g		÷	:	;	:	-0.2	3 ± 0	.22
-1.4 - 1. 2	-1 -0.8 -0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1	1.2	1.4

ϕ_3 With ADS

ADS method: $B^- \to DK^-$ with $D \to K^+\pi^-$ or similar

Favoured $(b\to c)~B$ decay followed by DCS D decay interferes with suppressed $(b\to u)~B$ decay followed by the CKM-favoured D decay

Measured observables

$$\mathcal{R}_{DK} \equiv \frac{\mathcal{B}([K^{+}\pi^{-}]K^{-}) + \mathcal{B}([K^{-}\pi^{+}]K^{+})}{\mathcal{B}([K^{-}\pi^{+}]K^{-}) + \mathcal{B}([K^{+}\pi^{-}]K^{+})}$$
$$\mathcal{A}_{DK} \equiv \frac{\mathcal{B}([K^{+}\pi^{-}]K^{-}) - \mathcal{B}([K^{-}\pi^{+}]K^{+})}{\mathcal{B}([K^{+}\pi^{-}]K^{-}) + \mathcal{B}([K^{-}\pi^{+}]K^{+})}$$

Relationship between observables constrain ϕ_3

$$\mathcal{R}_{DK} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos\phi_3$$
$$\mathcal{A}_{DK} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin\phi_3}{\mathcal{R}_{DK}}$$

Amplitude ratio: $r_D = \frac{A(D^0 \rightarrow K^+ \pi^-)}{A(\bar{D}^0 \rightarrow K^+ \pi^-)}$

Strong phase difference, δ_D

ϕ_3 With ADS

Fit event shape Neural Network for better discrimination from dominant continuum background

ϕ_3 With ADS

ϕ_3 With GGSZ

GGSZ method: Fit Dalitz plot of D decay to simultaneously determine r_B , δ_B and ϕ_3

However, model uncertainty is dominant systematic error \rightsquigarrow remove with binned Dalitz method Choice of binning affects ϕ_3 precision, but not ϕ_3 itself

Meausure yield in each bin iAnd compare in a χ^2 fit with $N_i^{\pm} = h_B [K_i + r_B^2 K_{-i} + 2\sqrt{K_i K_{-i}} (x_{\pm} c_i + y_{\pm} s_i)]$ $x_{\pm} = r_B \cos(\delta_B \pm \phi_3), y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$ N_i^{\pm} : Expected number of $B^{\pm} \rightarrow DK^{\pm}$ events in bin i

 K_i : Number of events in bin *i* determined from a flavour-tagged sample ($D^{*\pm} \rightarrow D\pi^{\pm}$)

 c_i, s_i : related to average strong phase difference in bin i

 $c_i = \langle \cos \Delta \delta_D \rangle_i$, $s_i = \langle \sin \Delta \delta_D \rangle_i$

Measured by CLEO with $\psi(3770) \rightarrow D^0 \bar{D}^0$, can also be measured at BES-III

 ϕ_3 With GGSZ

Belle: arXiv:1204.6561 χ^2 / ndf 33.31 / 15 **50**_F Number of events N(B⁺)-N(B⁻) Prob 0.004247 100 40 B 30 80 20 **B**⁺ 10 60 0 -10 4(-20 -30 20 -40 -50^E 0 8 Bin 8 Bin -8 2 6 2 .2 n 6 Δ

Significant CP asymmetry can be seen

0.4% probability of statistical fluctuation

$$\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3)^{\circ}$$

3rd uncertainty from CLEO measurements of c_i , s_i

Dalitz method dominates ϕ_3 constraint

 $\bar{B} \to D^* l \bar{\nu}_l$

$$\frac{d\Gamma}{d\boldsymbol{w}}(\bar{B}\to D^*l\bar{\nu}_l) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\boldsymbol{w}^2-1)^{1/2} P(\boldsymbol{w}) (\eta_{\rm em} \mathcal{F}(\boldsymbol{w}))^2$$
$$\bar{B}\to Dl\bar{\nu}_l$$

$$\frac{d\Gamma}{d\boldsymbol{w}}(\bar{B} \to Dl\bar{\nu}_l) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_{D^*}^3 (\boldsymbol{w}^2 - 1)^{3/2} (\eta_{\rm em} \mathcal{G}(\boldsymbol{w}))^2$$

Extraction of $|V_{cb}|$ depends on w: the energy of the $D^{(*)}$ in the decay rest frame

HQS and Lattice QCD predicts form factors $\mathcal{F}(w)$, $\mathcal{G}(w)$ at w = 1, i.e. when $D^{(*)}$ at rest

J. Bailey, PoS LATTICE2010 311 (2010)

M. Okamoto et al., Nucl. Phys. (Proc. Supp.) B140, 461 (2005)

Form factors also parametrised in terms of ρ^2 : the slope at w = 1

For $\bar{B} \to D^* l \bar{\nu}_l$, additional parametrisation from form factor ratios R_1 , R_2

Constrained by angular analysis of $\bar{B} \to D^* l \bar{\nu}_l$ system

Then $\left|V_{cb}
ight|$ can be obtained from extrapolation of measured spectrum to w=1

 $\bar{B} \to D^* l \bar{\nu}_l$

Inclusive V_{cb}

$$\Gamma(\bar{B} \to X_c l \bar{\nu}_l) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{nonpert} A_{pert}$$

Experimental observables: leptonic energy and hadronic mass moments

In the Heavy Quark Expansion, total semileptonic rate expanded in $1/m_B$

Mass moments expressed in terms up to ${\cal O}(lpha_s^2)$

Free parameters include m_c , m_b and μ_π^2

Two ways to deal with the b quark pole mass: Kinetic and 1S schemes

Fit to measure inclusive rate $\Gamma(\bar{B} \to X_c l \bar{\nu}_l)$ and $|V_{cb}|$

Semileptonic moments determine linear combination of m_b and m_c , need more information

Precise charm quark mass to constrain m_c

Radiative $B \to X_S \gamma$ moments which provide additional constraints on m_b and μ_π^2

Inclusive measurements give the most precise determination of $|V_{cb}|$