

b-physics with ATLAS and CMS

Louise Oakes for the ATLAS and CMS collaborations Ludwig Maximillians Universität München

Rencontres de Blois Blois, 29th May 2012

b-physics at the LHC

- World's highest energy and luminosity hadron collider
- pp collisions at 7 (8) TeV
- High B production cross sections
 - Collected largest hadron collision samples of *B* mesons in 2011
 - Overtaken Tevatron statistics for B meson samples

Delivered luminosity exceeded expectations for 2011 and continues to improve in 2012

ATLAS and CMS detectors

 General purpose detectors designed for high p_T studies

- Different p_T and eta range from
 LHCb
 - complementary *B* physics environments
- Rich *B* physics programmes at both experiments

Observations and lifetimes

 B lifetime measurements test the detector and reconstruction performance as well as preparing for CPV analyses

B meson observation and lifetimes

- With the 2010 data sample, ATLAS and CMS have demonstrated that B meson lifetimes can be accurately measured with the detector
- Very important component of the *CP* violation analysis in B_s ->J/ $\psi \varphi$

Parameterisations (e.g. backgrounds) tested in these analysis can be used directly in CP violation measurements

29th May 2012

Inclusive B lifetimes ATLAS

29th May 2012

Rare decays: $B_{(s)} \rightarrow \mu\mu$ (b) W⁺ (a) b b ~~~~~ W⁺ μ* **Ζ**^υ,γ W S μ W μ S

CMS: arXiv:1203.3976 [hep-ex] (Accepted by JHEP)
 ATLAS: arXiv:1204.0735v2 [hep-ex] (Submitted to Phys.Lett.B)

$B_{(s)} \rightarrow \mu \mu$: Motivation

- □ Search for $B_s \rightarrow \mu\mu$ is an SM benchmark in flavour physics
- Can only occur through higher order FCNC diagrams (in SM)
- Good BSM probe:
 - small predicted SM cross section

$$\mathcal{BR}(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$

(Buras et al, JHEP 1009 (2010) 106)

- very low theoretical uncertainties
- large class of BSM models predict large enhancements of $\mathscr{BR}(B_s \rightarrow \mu\mu)$
- clean signature
- ratio of $\mathcal{BR}(B_s \to \mu^+ \mu^-) / \mathcal{BR}(B_d \to \mu^+ \mu^-)$ can be used to discriminate between various BSM models

$B_{(s)} \rightarrow \mu\mu$: Searches

- Branching ratios measured relative to a high statistics reference channels
 - $B^+ \to J/\psi K^+ \\ B_s \to J/\psi \phi$
- Main backgrounds are:
 - continuum μμ
 - estimated from mass sidebands
 - resonant backgrounds from misreconstructed decays
 - estimated using MC
- Differing event topology used to select signal like events with BDT or kinematic cuts

mass distribution of control sample

High luminosity from the LHC important to this analysis

$B_{(s)} \rightarrow \mu \mu$: ATLAS results

- Signal selected by BDT combining kinematic and reconstruction variables
- BDT optimisation and background estimation using independent sample of sideband events to avoid bias on expected limit
- Measurement carried out in 3 η regions
- Plot show data passing selection cuts in signal regions
- 2.4 fb⁻¹ data used in this analysis

$ \eta _{\rm max}$ Range	0-1.0	1.0 - 1.5	1.5 - 2.5
$SES = (\epsilon \epsilon_i)^{-1} [10^{-8}]$	0.71	1.6	1.4
$\epsilon = (f_s/f_u)/\text{BR}(B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^+ \mu^- K^{\pm})$ [10 ³]	4.45 ± 0.38		
$\epsilon_i = N_i^{B^{\pm} \to J/\psi K^{\pm}} / R_{A\epsilon}^i \ [10^4]$	3.14 ± 0.17	1.40 ± 0.15	1.58 ± 0.26
bkg. scaling factor $R_i^{\rm bkg}$	1.29	1.14	0.88
sideband count $N_{\text{obs},i}^{\text{bkg}}$ (even numbered events)	5	0	2
expected resonant bkg. $N_i^{B \to hh}$	0.10	0.06	0.08
search region count N_i^{obs}	2	1	0

29th May 2012

$B_{(s)} \rightarrow \mu \mu$: CMS results

11

- Signal selected by cuts on kinematic and reconstruction variables
- Measurement carried out in 2 detector regions then combined
- Plot shows data passing selection cuts in signal regions
- Full 2011 data sample of 5 fb⁻¹

Variable	$B^0 ightarrow \mu^+ \mu^-$ Barrel	$ m B^0_s ightarrow \mu^+ \mu^-$ Barrel	$B^0 \rightarrow \mu^+ \mu^-$ Endcap	${ m B_s^0} ightarrow \mu^+\mu^-$ Endcap
$\varepsilon_{\rm tot}$	0.0029 ± 0.0002	0.0029 ± 0.0002	0.0016 ± 0.0002	0.0016 ± 0.0002
$N_{ m signal}^{ m exp}$	0.24 ± 0.02	2.70 ± 0.41	0.10 ± 0.01	1.23 ± 0.18
$N_{\rm peak}^{ m exp}$	0.33 ± 0.07	0.18 ± 0.06	0.15 ± 0.03	0.08 ± 0.02
$N_{\rm comb}^{\rm texp}$	0.40 ± 0.34	0.59 ± 0.50	0.76 ± 0.35	1.14 ± 0.53
$N_{ m total}^{ m exp}$	0.97 ± 0.35	3.47 ± 0.65	1.01 ± 0.35	2.45 ± 0.56
N _{obs}	2	2	0	4

New measurement from CMS

□ First shown this month by Daniele Pedrini at Charm 2012:

http://www.phys.hawaii.edu/indico/getFile.py/access?contribId=10&sessionId=47&resId=0&materiaIId=slides&confId=338

Rare decay: $D^0 \rightarrow \mu\mu$

Very rare FCNC process, heavily suppressed in the SM

- NP models can enhance these fractions by orders of magnitude
- Search for FCNC in charm sector complementary to studies in *B* and *K* decays

$D^0 \rightarrow \mu \mu$: Analysis method

 Branching fraction measured as a ratio with a kinematicly similar control mode:

 $\frac{D^{*+} \to D^0(\mu^+ \mu^-)\pi^+}{D^{*+} \to D^0(K^- \mu^+ \nu)\pi^+}$

- Many systematic uncertainties cancel
- Control channel yields 16458 ± 204 candidates
- 2010 and early 2011 data used

- Both decays reconstructed topologically
- Determine primary and secondary vertices
- D⁰ candidate combined with one track from PV to form D^{*+}

$D^0 \rightarrow \mu \mu$: Results

- △*M* distribution shows no significant deviation from background
- PDG value marked with —

$D^0 \rightarrow \mu \mu$: Results

- No evidence for decay $D^0 \rightarrow \mu^+ \mu^-$
- Upper limit set for branching ratio
- Contamination from peaking background $D^0 \rightarrow \pi^+\pi^$ negligible due to very tight muon selection
- Background estimated from D⁰ mass sidebands

$$\begin{split} & \mathcal{BR}(\mathbf{D}^{\mathbf{0}} \to \mu^{+}\mu^{-}) \leq \\ & \mathcal{BR}(\mathbf{D}^{\mathbf{0}} \to \mathbf{K}^{-}\mu^{+}\nu) \times \frac{\mathbf{N_{Data}}(\mu\mu)}{\mathbf{N_{Data}}(\mathbf{K}\mu\nu)} \\ & \times \frac{\mathbf{a}(\mathbf{K}\mu\nu)}{\mathbf{a}(\mu\mu)} \times \frac{\epsilon_{\mathbf{trig}}(\mathbf{K}\mu\nu)}{\epsilon_{\mathbf{trig}}(\mu\mu)} \times \frac{\epsilon_{\mathbf{rec}}(\mathbf{K}\mu\nu)}{\epsilon_{\mathbf{rec}}(\mu\mu)} \end{split}$$

- Taken from PDG
- Measured in CMS data
- Calculated from MC

• Using CL_s method, 90% CL is computed: $\mathcal{BR}(\mathbf{D^0} \to \mu^+ \mu^-) \leq \mathbf{5.4} \times \mathbf{10^{-7}}$

Best limit is from LHCb, at the 95% CL: $\mathcal{BR}(\mathbf{D^0} \rightarrow \mu^+ \mu^-) \leq \mathbf{1.3} \times \mathbf{10^{-8}}$

Summary

- Wide ranging b-physics programmes on ATLAS and CMS
- High statistics and strong detector performance produce competitive results
- A few highlights shown in this talk
 - B lifetime measurements
 - Rare decays
 - B→µµ
 - D⁰→µµ
- Heavy flavour production covered in talk by S. Argiro in tomorrow's HF and QCD session
- See the b-physics public webpages for further results:
 - twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH
 - twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Future:

- Challenge for *B* physics is to use triggers efficiently
- Di-muon triggers will be prescaled
- Higher lumi -> greater pileup, plot shows that selection efficiency is not affected for ≤ 20 primary vertices per event

Back up

29th May 2012

Triggers

- Di-muon triggers provide clean selection of bdecays with two muons in final state
- Different triggers for specific dimuon resonances and continuum
- Rates adjusted with pre-scales or p_T thresholds

$B_{(s)} \rightarrow \mu \mu$: Analysis technique

- Major elements of the technique are the same for both experiments
- Differences discussed in later slides
- Rate of $B_s \rightarrow \mu\mu$ is measured relative to a control channel, $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu\mu$ or $B_s \rightarrow J/\psi\phi$
- Many systematic uncertainties cancel when taking the ratio

$$\begin{aligned} \mathcal{BR}(B_s \to \mu^+ \mu^-) = \underbrace{\begin{array}{c} \frac{N_{B_s}}{N_{B^+}} \frac{\epsilon_{B^+}^{trig}}{\epsilon_{B_s}^{trig}}}_{N_{B^+} \frac{\epsilon_{B^+}^{reco}}{\epsilon_{B_s}^{treco}} \frac{\alpha_{B^+}}{\alpha_{B_s}} \frac{1}{\epsilon_{B_s}^{NN}}} \underbrace{\begin{array}{c} \frac{f_{\mu}}{f_s} \cdot \mathcal{BR}(B^+ \to J/\Psi K^+ \to \mu^+ \mu^- K^+) \end{array}}_{From Data, From MC, From PDG} \\ N_{B^+} \approx 2 \times 10^4 & \frac{\epsilon_{B^+}^{reco}}{\epsilon_{B_s}^{reco}} \approx 1 & \frac{f_u}{f_s} \approx 3 \\ & \frac{\epsilon_{B^+}^{trig}}{\epsilon_{B_s}^{trig}} \approx 1 & \frac{\alpha_{B^+}}{\alpha_{B_s}} \approx 0.5 & \mathcal{BR}(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) \approx 5 \times 10^{-5} \\ & \frac{1}{\epsilon_{B_s}^{NN}} \approx 1 \end{aligned}}$$

$B_{(s)} \rightarrow \mu\mu$: Background rejection

Signal is fully reconstructed, long lived decay

Background can be made up of:

Semi-leptonic decay:

 $b \rightarrow c\mu^{-}X \rightarrow \mu^{+}\mu^{-}Y$

Double semi-leptonic decay: $bb \rightarrow \mu^+ \mu^- X$

- μ+fake, fake + fake
- **continuum** $\mu^+\mu^-$

mass distribution of control sample

 $\square B \rightarrow hadrons$ (peaking in B mass signal region)

Background is generally softer, short lived, not fully reconstructed, more tracks

