

Rare Beauty, Charm and Tau decays at LHCb

Ricardo Vázquez Gómez (UB-ICC) on behalf of the LHCb collaboration

Outline

- Introduction to rare decays
- Branching Ratios
 - Measurements and limits
- Angular analysis on $B_d \rightarrow K^{*0} \mu^+ \mu^-$
- Isospin asymmetry on $B_d \rightarrow K^{(*0)} \mu^+ \mu^-$
- Conclusions

NP through rare B and D decays

- FCNC ($\Delta F = 1$ and $\Delta F = 2$) in the SM are suppressed and only produced at loop-level.
 - Promising to look for new contributions in the loop from heavy particles.
 - NP can enhance BR or modify Lorentz structure
 - Explore the transitions:
 - $b \rightarrow sl^+l^-$
 - $b \rightarrow dl^+l^-$
 - $b \rightarrow s\gamma$

• Indirect searches are complementary to the results from GP experiments.

$$D^0 \to \mu^+ \mu^-$$

LHCb-CONF-2012-05

- Very suppressed in the SM with a prediction O(10⁻¹³ 10⁻¹¹) [Phys. Rev. D66 (2002) 014009]
- Correlated with the D⁰ mixing in some NP models through

- $x_D = \Delta M_D / \Gamma_D$ [Phys. Rev. D79 (2009) 114030]

 Analysis based on D*-tagged samples with 0.9 fb⁻¹. Provides clean samples.

- Selects $D^{*+} \rightarrow D^0(\mu^+\mu^-)\pi^+$

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^{*+} \to D^0(\mu^+ \mu^-)\pi^+}}{N_{D^{*+} \to D^0(\pi^+ \pi^-)\pi^+}} \times \frac{\epsilon_{\pi\pi}^{TRIG}}{\epsilon_{\mu\mu}^{TRIG}} \times \frac{\epsilon_{\pi\pi}^{RECO}}{\epsilon_{\mu\mu}^{RECO}} \times \frac{\epsilon_{\pi\pi}^{SEL}}{\epsilon_{\mu\mu}^{SEL}} \times \mathcal{B}(D^0 \to \pi^+ \pi^-)$

• Two-dimensional fit to the D⁰ mass and D^{*+} - D⁰ mass difference.

Signal $D^0 \rightarrow \mu^+ \mu^-$: light solid (compatible with 0) Bkg $D \rightarrow \pi^+ \pi^-$: dark dashed (can be predicted from data)

LHCb-CONF-2012-05

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 1.4 \times 10^{-7} \text{ at } 90\% \text{ CL}$ [Phys. Rev. D81 (2010) 091102]

$$B^+ \rightarrow \pi^+ \mu^+ \mu^-$$

LHCb-CONF-2012-006

50 (2008) 696]

 $M_{\pi\mu\mu}$ (MeV / c²)

6

- $b \rightarrow dl^{+}l^{-}$ transition never observed before.
- In SM is suppressed by $|V_{td}/V_{ts}| \rightarrow BR = (1.96 \pm 0.21) \times 10^{-8}$ [Commun. Th. Phys.

Suppression may not appear in NP scenarios.

$$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = \frac{N_{B^+ \to \pi^+ \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \times \frac{\epsilon_{B^+ \to J/\psi K^+}}{\epsilon_{B^+ \to \pi^+ \mu^+ \mu^-}} \times \mathcal{B}(B^+ \to J/\psi K^+)$$

- Rarest B decay observed by LHCb
 - 5.2σ significance

 $-25.3^{+6.7}_{-6.4}$ events

Events / (20 MeV / c^2 LHCb Preliminary Signal Misidentified $B^+ \rightarrow K^+\mu^+\mu^+$ Partially reconstructed backgrounds $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = 2.4 \pm 0.6(\text{stat}) \pm 0.2(\text{syst}) \times 10^{-8}$ 7000 5000 6500 5500 6000

First BR measurement of this channel with 1.0 fb⁻¹

Majorana neutrino

- Processes mediated through Majorana neutrino with 2 same-sign muons in final state → Lepton Number Violation processes:
 - Virtual neutrino (a) \rightarrow D⁺, D⁺⁺
 - On-shell neutrino (b,c) $\rightarrow \pi^+$, K⁺, D⁺_s, D⁰ π^+

Ricardo Vazquez Gomez. LHCb Rare Beauty and Charm.

7

Majorana neutrino [arXiv:1201.5600] (to be

[PR Lett. 108 101601 (2012)] published in Phys.Rev. D)

- Use $B^{-} \rightarrow J/\psi K^{-}$ and $B^{-} \rightarrow \psi(2S)(\rightarrow \pi^{+}\pi^{-}J/\psi)K^{-}$ as control channels.
- No signal for any of the channels have been found.

$$B_s \to \phi \mu^+ \mu^-$$

LHCb-CONF-2012-003

• Measure the branching fraction $B_s \rightarrow \phi \mu^+ \mu^-$ normalised to $B_s \rightarrow J/\psi \phi$

$$\frac{\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to J/\psi \phi)} = \frac{N_{B^0_s \to \phi \mu^+ \mu^-}}{N_{B^0_s \to J/\psi \phi}} \times \frac{\epsilon_{B^0_s \to J/\psi \phi}}{\epsilon_{B^0_s \to \phi \mu^+ \mu^-}} \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$$

• SM prediction is 1.61 x 10⁻⁶ [J. Phys. G29 (2003) 1103]

 Measure in 6 bins of di-muon invariant mass (q²) + 1 bin in range [1-6] GeV²/c⁴ using 1.0 fb⁻¹

$$B_{s/d} \rightarrow \mu^+ \mu^-$$

• Experimental limits approaching the SM predictions with 1.0 fb⁻¹.

$$\mathbf{SM} \begin{cases} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.2 \pm 0.2 \times 10^{-9} \\ \mathcal{B}(B_d^0 \to \mu^+ \mu^-) = 0.10 \pm 0.01 \times 10^{-9} \end{cases}$$

LHCb
$$\begin{cases} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.5 \times 10^{-9} \text{ at } 95\% \text{ CL} \\ \mathcal{B}(B_d^0 \to \mu^+ \mu^-) < 1.0 \times 10^{-9} \text{ at } 95\% \text{ CL} \end{cases}$$

[JHEP 1010 (2010) 009]

[arXiv:1203.4493] To be published by PRL

• Some NP models have reduced BR for $B_s \rightarrow \mu^+ \mu^-$ with respect to SM.

Strong constraints on NP models.

[arXiv:1107.0266v1]

$$B_{s/d} \rightarrow \mu^+ \mu^- \mu^+ \mu^- \qquad \text{Lhcb-conf-2012-010}$$

• SM prediction for B_s is $BR < 10^{-10}$ [Phys. Rev. D70 (2004) 114028] $\frac{\mathcal{B}(B_{s,d}^0 \to \mu^+ \mu^- \mu^+ \mu^-)}{\mathcal{B}(B_d^0 \to J/\psi K^{*0})} = \frac{N_{B_{s,d}^0 \to \mu^+ \mu^- \mu^+ \mu^-}}{N_{B_d^0 \to J/\psi K^{*0}}} \times \frac{\epsilon_{B_d^0 \to J/\psi K^{*0}}}{\epsilon_{B_{s,d}^0 \to \mu^+ \mu^- \mu^+ \mu^-}} \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \mathcal{B}(K^{*0} \to K^+ \pi^-)$

• First searches of these decays. Use 1.0 fb⁻¹

$$B_d \rightarrow K_s \mu^+ \mu^-$$

[arXiv:1205.3422] To be published by JHEP

Spin-off from the isospin asymmetry measurement with 1.0 fb⁻¹.

First observation of this mode $\rightarrow 5.7\sigma$ significance

 $\tau \rightarrow \mu^+ \mu^- \mu^-$

Lepton Flavour Violation decay with SM prediction below experimental reach.

$$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) = \mathcal{B}(D_s^- \to \phi(\mu^+ \mu^-) \pi^-) \times \frac{f(\tau^-(D_s^-))}{\mathcal{B}(D_s^- \to \tau^- \nu_{\overline{\tau}})} \times \frac{\epsilon_{cal}^{REC*SEL} \epsilon_{cal}^{TRIG|SEL}}{\epsilon_{sig}^{REC*SEL} \epsilon_{sig}^{TRIG|SEL}} \times \frac{N_{sig}}{N_{cal}}$$

First measurement of this channel on a hadronic environment.

Differential BR $B_d \rightarrow K^{*0}\mu^+\mu^-$

LHCb-CONF-2012-008

Differential BR as a function of q². Normalise with $B_d \rightarrow K^{*0}J/\psi$

Angular analysis $B_d \rightarrow K^{*0}\mu^+\mu^-$ LHCb-CONF-2012-008

- Angular distribution parametrised by 6 q²-dependent parameters.
- Not enough statistics yet to perform a full angular fit.

- Fold the distribution $\hat{\phi} = \phi + \pi$ if $\phi < 0$ and $\hat{\phi} = \phi$ if $\phi > 0$

$$\frac{1}{\Gamma} \frac{d^4 \Gamma}{d \cos \theta_l d \cos \theta_K d \hat{\phi} d q^2} = \frac{9}{16\pi} \left(F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) + F_L \cos^2 \theta_K (2 \cos^2 \theta_l - 1) + p \hat{h} i = p h i \right)$$

$$F_L \cos^2 \theta_K (2 \cos^2 \theta_l - 1) + p \hat{h} i = p h i$$

$$\frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_l - 1) + F_L \cos^2 \theta_L (2 \cos^2 \theta_l - 1) + F_L \cos^2 \theta_L (2 \cos^2 \theta_l - 1) + F_L \cos^2 \theta_L (1 - \cos^2 \theta_L) \cos 2 \hat{\phi} + F_L \cos^2 \theta_L (1 - \cos^2 \theta_L) \cos 2 \hat{\phi} + F_L \cos^2 \theta_L (1 - \cos^2 \theta_L) \cos 2 \hat{\phi} + F_L \cos^2 \theta_L (1 - \cos^2 \theta_L) \sin 2 \hat{\phi} \right)$$

$$F_L = f_{TO} \text{ action of } K^* 0 \text{ loggestudingly polarized}$$

F_L, fraction of K^{*0} longitudinally polarised
S₃, asymmetry in K^{*0} transverse polarisation
A_{FB}, forward-backward asymmetry
A_{Im}, a T-odd CP asymmetry

Angular analysis $B_d \rightarrow K^{*0}\mu^+\mu^-$

LHCb-CONF-2012-008

• Angular observables as a function of q².

Zero-crossing point $B_d \rightarrow K^{*0}\mu^+\mu^-$ LHCb-CONF-2012-008

• In SM forward-backward asymmetry of di-muon system change sign at a well defined value of $q^2_0 = 4.0 - 4.3 \text{ GeV}^2/c^4$

--Unbinned

- Free from form-factor uncertainties

6

 $q^2 (GeV^2/c^4)$

Counting Experiment

4

Theorv

HCb

2

Preliminarv

AFB

-0.5

[JHEP 1201 (2012) 107], [Eur. Phys. J. C41 (2005) 173], [Eur. Phys. J. C47 (2006) 625]

First measurement of the zerocrossing point.

$$- q_0^2 = 4.9^{+1.1}_{-1.3} \text{ GeV}^2/c^4$$

Compatible with SM expectations (4.0-4.3 GeV²/c⁴).

Isospin asymmetry $B_d \rightarrow K^{(*)}\mu^+\mu^-$

arXiv:1205.3422, to be published in JHEP

$$A_{I} = \frac{\Gamma(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \Gamma(B^{+} \to K^{(*)+}\mu^{+}\mu^{-})}{\Gamma(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \Gamma(B^{+} \to K^{(*)+}\mu^{+}\mu^{-})}$$

- SM prediction for $B \rightarrow K^* \mu^+ \mu^-$ is -1% at low q² [JHEP 01 (2003) 074]
- No precise determination for $B \rightarrow K\mu^+\mu^-$

Significance of the combined deviation from 0 is **4.4σ** Compatible with BaBar result of **3.9σ** [PRL 102 (2008) 091803] Ricardo Vazquez Gomez. LHCb Rare Beauty and Charm.

Conclusions

- LHCb is performing remarkably well and producing many interesting results with 2010 and 2011 data.
 - Branching Ratio limits have been pushed down or studied for the first time.
 - Angular analysis on $B_d \rightarrow K^{*0} \mu^+ \mu^-$
 - First measurement of zero-crossing point at $B_d \rightarrow K^{*0} \mu^+ \mu^-$
 - Isospin asymmetries on $B_d \rightarrow K^{(*0)} \mu^+ \mu^-$
- So far, all results are compatible with the SM predictions, but constraining the NP parameter space at TeV scale.
- Expect to take ~ 1.5 fb⁻¹ of data in 2012.
- More results to come at Summer conferences with full 2011 data.

BACKUP

Majorana neutrino

Events in B- mass window compatible with bkg expectations.