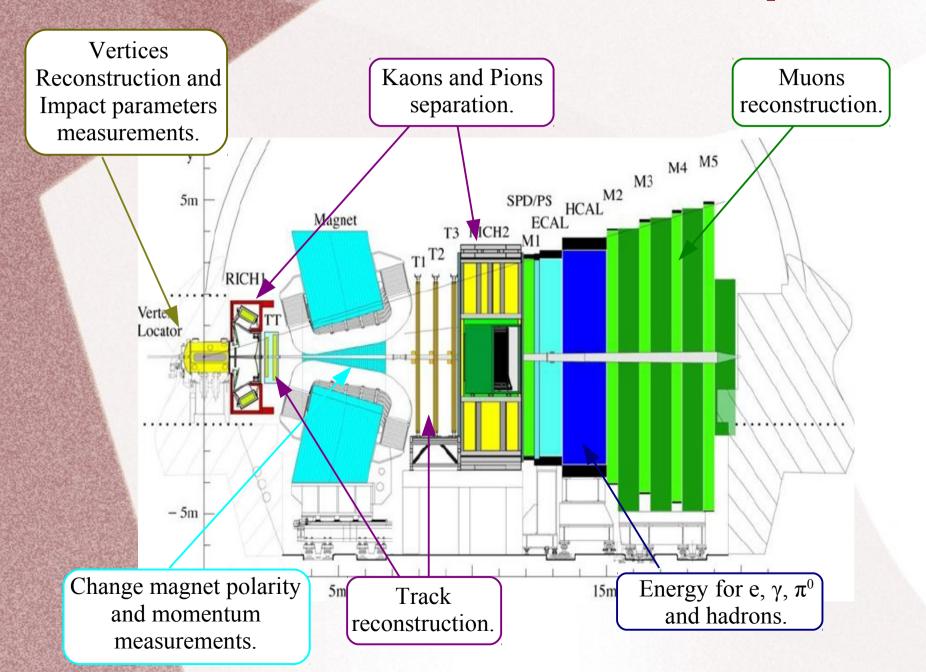


CP Violation in the beauty system at LHCb

Alvaro Gomes


University of Rio de Janeiro - UFRJ
On behalf of LHCb collaboration

24th Rencontres de Blois Particles Physics and Cosmology

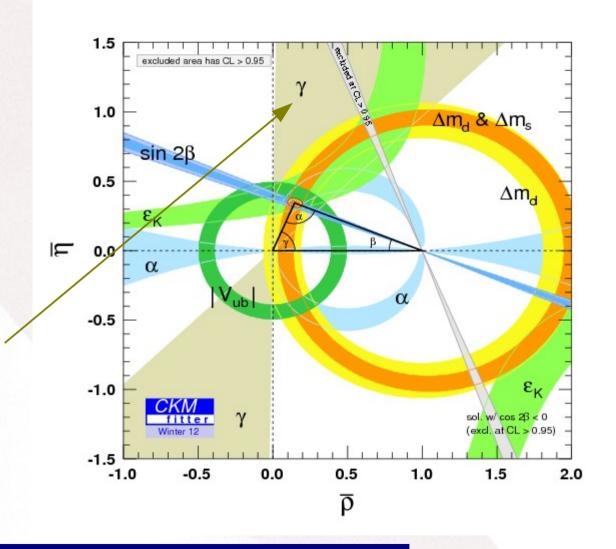
Outline

- LHCb experiment.
- CKM angle γ.
- Charmless two body decays.
 - o Direct CP violation results. (0.35 fb⁻¹)
 - o Time-dependent CP violation results. (0.69 fb⁻¹)
- CP asymmetry of $B_u \rightarrow J/\psi \pi$ and $B_u \rightarrow \psi(2s)\pi$. (0.37 fb⁻¹)
- CP asymmetry of $B_u \rightarrow DK$ decays. (1.0 fb⁻¹)

The LHCb experiment

CKM angle y

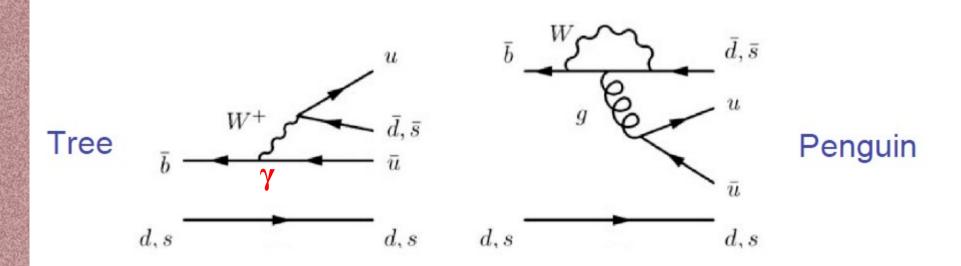
• CKM matrix on Wolfenstein parametrization:


$$\begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

• Unitary triangle:

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Despite the effort at B factories and CDF, γ error is still dominated by experimental uncertainties.


$$\gamma$$
 (dir.) = $(66 \pm 12)^{\circ}$
 γ (indir.) = $(67.1 \pm 4.3)^{\circ}$

Most recent γ measurement: $\gamma = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$

Belle:arXiv:1204.6561

Charmless 2 body B decays

- Decay amplitudes have contribution from tree and penguin diagrams;
- Sensitive to $V_{ub} \rightarrow CKM$ angle γ ; arxiv:hep-ph/9903456; arxiv:0705.1121; arxiv:1011.1096
- May be sensible to new physics contribution at penguin level;
- Tree and penguin interference allows to look for direct CP violation using the following observable:

$$A_{CP} = \frac{(N_{\bar{B} \to \bar{f}} - N_{B \to f})}{(N_{\bar{B} \to \bar{f}} + N_{B \to f})}$$

$$B \to f = \begin{cases} B^0 \to K^+ \pi^- \\ B_s \to \pi^+ K^- \end{cases}$$

Direct CPV in 2 body

LHCB-PAPER-2011-029
PRL 108.201601 **decays**

Extracted from the fit!

$$A_{raw} = A_{cp} + A_{det} + K^*A_{prod} = A_{cp} + A_{\Delta}$$

Instrumental Asymmetry

 A_{det} measured using charm control samples: $D^{*+} \rightarrow D0(K\pi)\pi^{+}$, $D^{*+} \rightarrow D^{0}(KK)\pi^{+}$ and $D^{0} \rightarrow K\pi$.

Production Asymmetry

- K: dilution of A_{prod} due to mixing, lifetime and acceptance.
- A_{prod} measured using $B^0 \to J/\psi \ K^{*0}(K\pi)$.

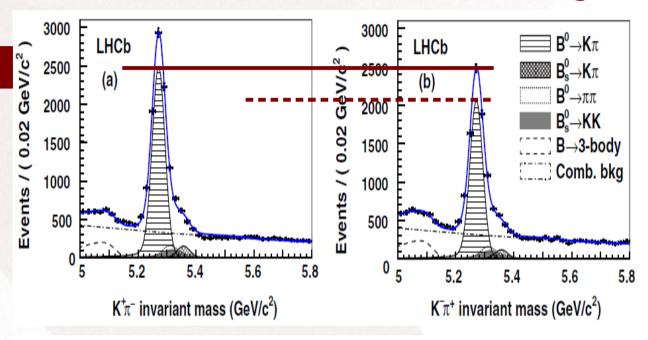
Final total correction A_{Λ} small.

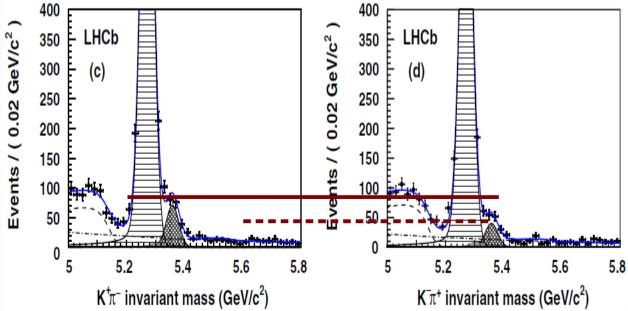
Direct CPV in 2 body

LHCB-PAPER-2011-029
PRL 108.201601 **decays**

• 0.35 fb⁻¹: $13250 \pm 150 \text{ B}_{d}$ candidates.

$$A_{cp}(B_d \to K\pi) = -0.088 \pm 0.011 \pm 0.008$$


- Agrees with world average: -0.098 ± 0.013 [PDG]
- World's most precise measurement


First 5σ observation of CP violation at hadron colliders.

• 0.35 fb⁻¹: 314 ± 27 B_s candidates.

$$A_{cp}(B_s \to \pi K) = 0.27 \pm 0.08 \pm 0.02$$

First 3σ evidence of direct CP violation in B_s decays.

Time-dependent CPV in 2 body decays

The time-dependent asymmetry can be written as:

LHCb-CONF-2012-007

$$A_{CP}(t) = \frac{A_f^{\text{dir}}\cos(\Delta mt) + A_f^{\text{mix}}\sin(\Delta mt)}{\cosh(\frac{\Delta\Gamma}{2}t) - A_f^{\Delta\Gamma}\sinh(\frac{\Delta\Gamma}{2}t)},$$

$$A_f^{\rm dir} = \frac{|\lambda_f|^2 - 1}{|\lambda_f|^2 + 1},$$
 and:
$$A_f^{\rm mix} = \frac{2{\rm Im}\lambda_f}{|\lambda_f|^2 + 1},$$

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}.$$

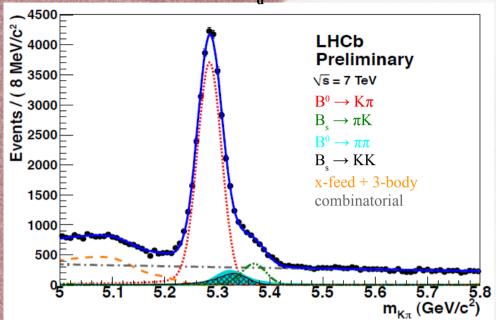
The current measurements for $B_d \to \pi\pi$ are:

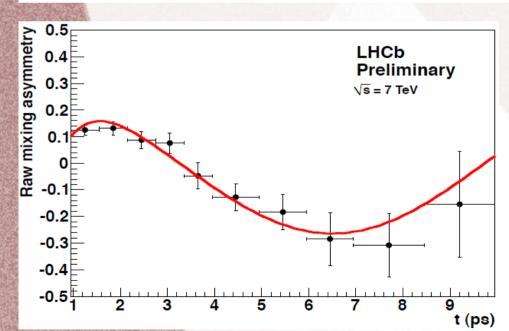
Experiment	$A_{\pi\pi}^{ m dir}$	$A_{\pi\pi}^{ m mix}$	$\rho(A_{\pi\pi}^{\mathrm{dir}}, A_{\pi\pi}^{\mathrm{mix}})$
BABAR	$0.25 \pm 0.08 \pm 0.02$	$-0.68 \pm 0.10 \pm 0.03$	0.06
Belle	$0.55 \pm 0.08 \pm 0.05$	$-0.61 \pm 0.10 \pm 0.04$	0.15
HFAG average	0.38 ± 0.06	-0.65 ± 0.07	0.08

BaBar

arXiv:0807.4226

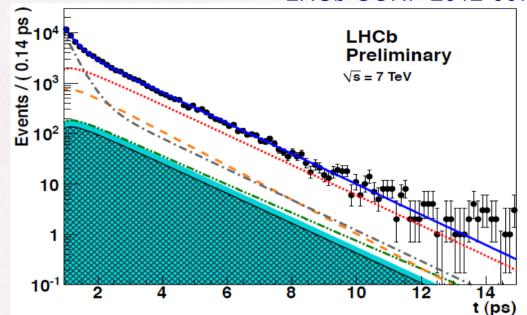
Belle


PRL 98 (2007) 211801


HFAG

arxiv:1010.1589

- Decay time acceptance determined from Monte Carlo.
- Decay time resolution from data: $\sigma_t = 50 \text{fs}$.
- Opposite side flavor tagging, efficiency and mistag rate calibrated by $B_d \to K\pi$.

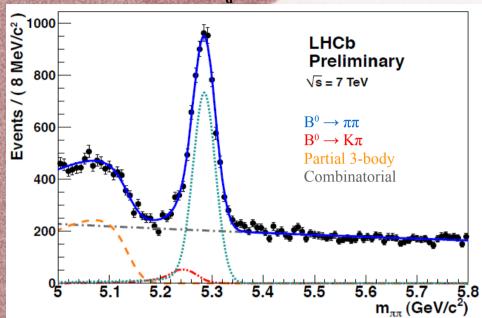

• 0.69 fb⁻¹: 27967 ± 204 B_d candidates.

$B_d \rightarrow K\pi$ fit results

LHCb-CONF-2012-007

Extract B_d parameters from fit, input for $B_d \to \pi\pi$ and $B_s \to KK$:

• Tagging power (opposite-side taggers):


$$(2.3 \pm 0.1)\%$$

• Production asymmetry:

$$A_{prod}(B_d) = (-1.5 \pm 1.3)\%$$

 $A_{prod}(B_s) = (-3 \pm 6)\%$


$$\Delta m_d = (0.484 \pm 0.019) \text{ ps}^{-1}$$

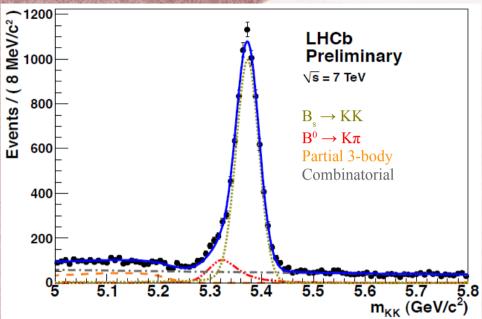
 $\tau(B_d) = (1.509 \pm 0.011) \text{ ps (Agree with WA [PDG])}^9$

• 0.69 fb⁻¹: 5359 ± 96 B_d candidates.

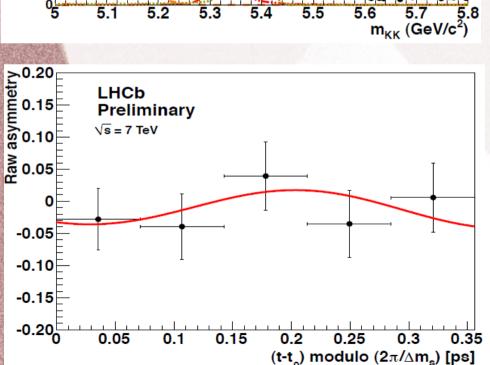
$B_d \rightarrow \pi\pi$ fit results

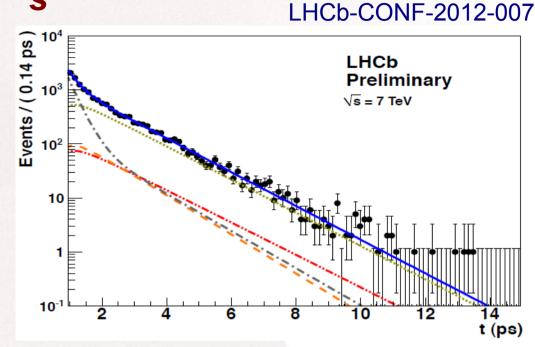
10

Extract CPV terms from fit:


$$A_{\pi\pi}^{\text{dir}} = 0.11 \pm 0.21,$$

 $A_{\pi\pi}^{\text{mix}} = -0.56 \pm 0.17,$
 $\rho(A_{\pi\pi}^{\text{dir}}, A_{\pi\pi}^{\text{mix}}) = -0.34.$

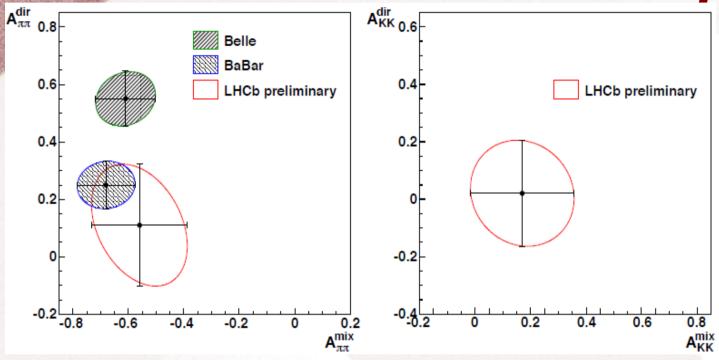

Only statistical uncertainties.


t (ps)

B_s -> KK fit results

• 0.69 fb⁻¹: 7155 ± 97 B_s candidates.

Extract CPV terms from fit:


$$A_{KK}^{\text{dir}} = 0.02 \pm 0.18,$$

 $A_{KK}^{\text{mix}} = 0.17 \pm 0.18,$
 $\rho(A_{KK}^{\text{dir}}, A_{KK}^{\text{mix}}) = -0.10.$

Only statistical uncertainties.

$B_d \rightarrow \pi\pi \ and \ B_s \rightarrow KK$

LHCb-CONF-2012-007

results

• $B_d \to \pi\pi$ and $B_s \to KK$ results:

$$A_{\pi\pi}^{
m dir} = 0.11 \pm 0.21 \pm 0.03, \ A_{\pi\pi}^{
m mix} = -0.56 \pm 0.17 \pm 0.03, \ A_{KK}^{
m dir} = 0.02 \pm 0.18 \pm 0.04, \ A_{KK}^{
m mix} = 0.17 \pm 0.18 \pm 0.05,$$

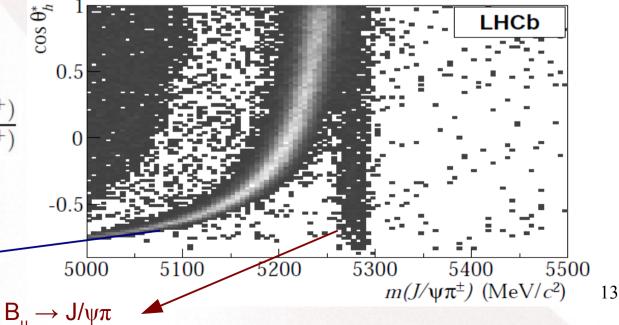
• For $B_d \to \pi\pi$, A^{mix} in agreement with world average from the B factories.

First 3.2σ evidence of time-dependent CPV at hadronic colliders.

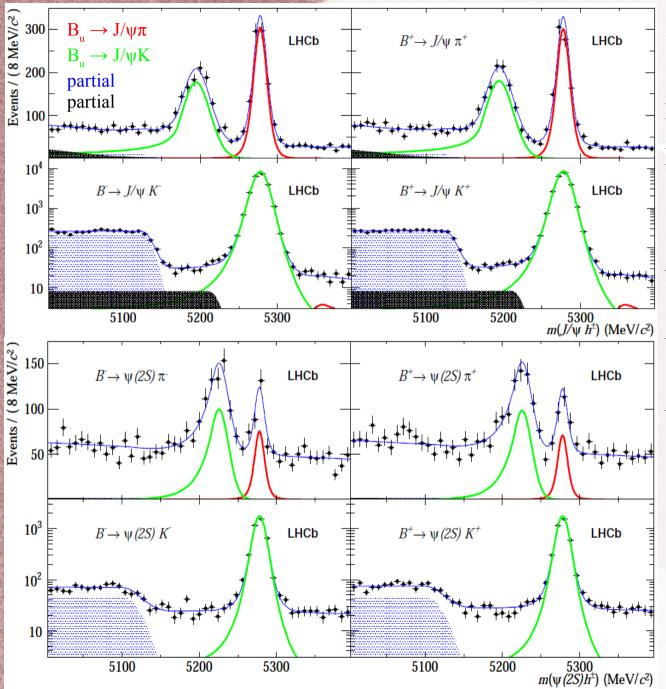
Direct CP in $B_{"} \rightarrow \psi \pi$

arXiv:1203.3592 LHCB-PAPER-2011-024

ψ holds for J/ ψ or ψ (2s)


- SM predicts the same tree-penguin week phase for $b \rightarrow ccs$ (ψK decays);
- SM predicts different tree-penguin weak phase for $b \rightarrow ccd (\psi \pi decays)$: CPV $\sim 2 (2 0^{-3})$;
- Analysis selects μ⁺μ⁻h⁺ decays (charge conjugation implied);
- K/ π identification done by helicity angle (cos(θ^*_h)) and by RICH particle ID;

• Two important observables:


$$A^{\psi\pi} = \frac{\mathcal{B}(B^- \to \psi\pi^-) - \mathcal{B}(B^+ \to \psi\pi^+)}{\mathcal{B}(B^- \to \psi\pi^-) + \mathcal{B}(B^+ \to \psi\pi^+)}$$

$$R^{\psi} = \frac{\mathcal{B}(B^{\pm} \to \psi\pi^{\pm})}{\mathcal{B}(B^{\pm} \to \psi K^{\pm})}$$

$$B_{\mathsf{u}} \to \mathsf{J}/\psi\mathsf{K}$$

Direct CP in $B_{"} \rightarrow \psi \pi$

arXiv:1203.3592 LHCB-PAPER-2011-024

$$R^{J/\psi} = (3.83 \pm 0.11 \pm 0.07)\%$$

$$R^{\psi(2s)} = (3.95 \pm 0.40 \pm 0.12)\%$$

$$A_{cp}(J/\psi\pi) = 0.005 \pm 0.027 \pm 0.011$$

$$A_{cp}(\psi(2s)\pi) = 0.048 \pm 0.090 \pm 0.011$$

$$A_{cp}(\psi(2s)K) = 0.024 \pm 0.014 \pm 0.08$$

No evidence of CP Violation.

Direct CPV in B_u → DK

• CP violation in tree level decays \rightarrow CKM angle γ measurement;

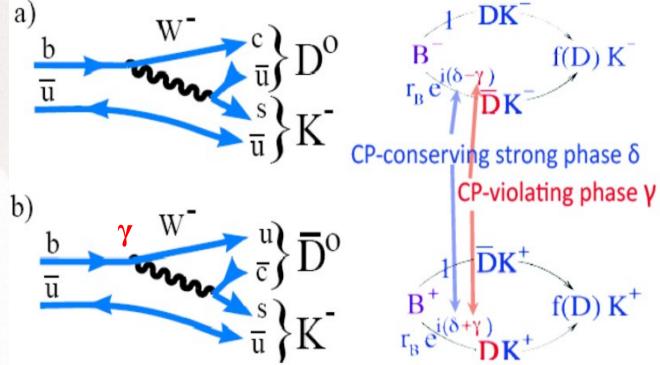
decays

• Many decay modes allow γ measurements through interferences between $b \to c$ and $b \to u$ transitions:

Time-dependent CPV:

$$B_s \rightarrow D_s^* K$$

 $B^0 \to D^*\pi$


Direct CPV:

$$B_u \rightarrow D^0(KK, \pi\pi)K (GLW)$$

 $B_u \rightarrow D^0(K\pi)K (ADS)$

Dalitz Plot Analysis:

$$B_u \rightarrow D^0(K_s hh)K;$$
 (**GGSZ**) o Best constrains to γ .

$$B_u \to DK\pi$$
;

Gronau, London, Wyler: Phys.Lett.B253:483,1991;Phys.Lett.B265:172,1991 Atwood, Dunietz, Soni: Phys.Rev.Lett.78:3257,1997 Giri, Grossman, Solfer, Zupan: Phys.Rev.D 68,0504018 (2003)

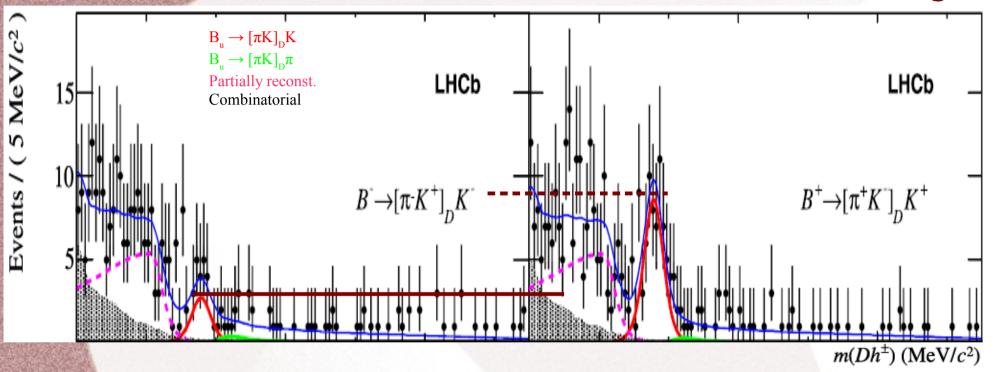
Direct CPV in B_u → DK LHCB-PAPER-2012-001 PLB 712 (2012) 203 decays

- Analysis deals with 13 observables;
- Three ratios of partial widths:

$$R_{K/\pi}^{f} = \frac{\Gamma(B^{-} \to [f]_{D}K^{-}) + \Gamma(B^{+} \to [f]_{D}K^{+})}{\Gamma(B^{-} \to [f]_{D}\pi^{-}) + \Gamma(B^{+} \to [f]_{D}\pi^{+})},$$

where f represents $\pi\pi$, KK and the favored K π mode.

• Six CP asymmetries:

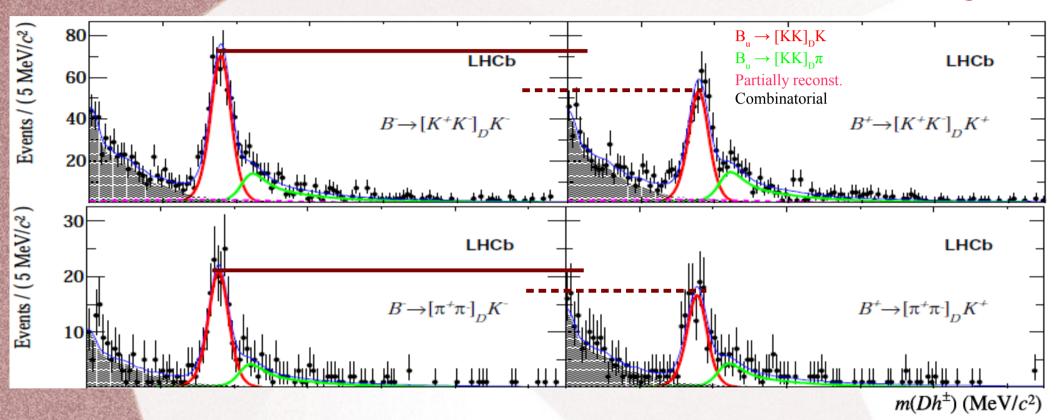

$$A_{h}^{f} = \frac{\Gamma(B^{-} \to [f]_{D}h^{-}) - \Gamma(B^{+} \to [f]_{D}h^{+})}{\Gamma(B^{-} \to [f]_{D}h^{-}) + \Gamma(B^{+} \to [f]_{D}h^{+})}'$$

• Four charged-separated partial widths of the ADS suppressed modes relative to the ADS favored mode:

$$R_h^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm} K^{\mp}]_D h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm} \pi^{\mp}]_D h^{\pm})}.$$

Direct CPV in B_{...} → DK

LHCB-PAPER-2012-001 PLB 712 (2012) 203 decays

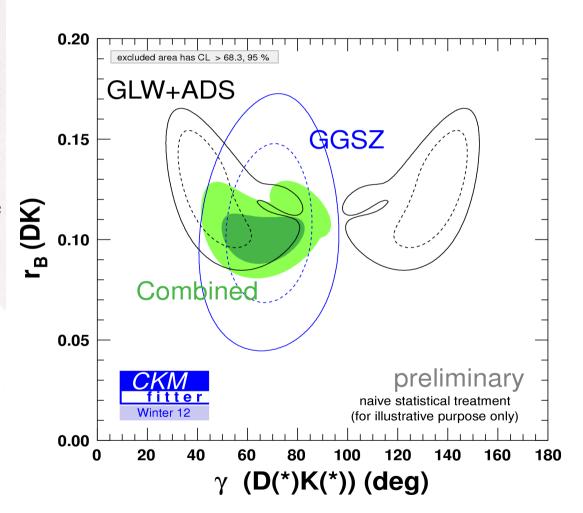

First 10 σ observation of ADS suppressed mode $B_u \rightarrow [\pi K]_D K$

 $A_{ADS}(K) = -0.52 \pm 0.15 \pm 0.02; \sim 3.5\sigma$

Direct CPV in B_{...} → DK

LHCB-PAPER-2012-001 PLB 712 (2012) 203

decays


Evidence of CPV

Acp($[KK]_D K$) = 0.148 ± 0.037 ± 0.010 Acp($[\pi\pi]_D K$) = 0.135 ± 0.066 ± 0.010

γ from $B_u \rightarrow DK$ decays

- Precise measurements of A_{cp} not necessarily leads to good gamma measurements (but it helps!).
- Many different analysis output will contribute to an accurate measurement.

LHCb expects to measure γ with an error of 5° until 2018.

Conclusions

- Many new results and improvements related to CPV in B \rightarrow hh decays:
 - o World's most precise measurement of direct CPV in $B_d \to K\pi$.
 - o First evidence of direct CPV in $B_s \rightarrow KK$.
 - o First evidence of time-dependent CPV in $B_d \to \pi\pi$.
- Direct CPV measurement in $B_u \to \psi \pi$:
 - o Comparable or better precision than previous results but no evidence of CPV.
- New results related to $B_{\parallel} \rightarrow DK$ decays:
 - o First observation of the ADS suppressed mode $B_{\mu} \rightarrow [\pi K]_{D}K$.
 - o First evidence of direct CPV in the ADS suppressed mode $B_{\mu} \rightarrow [\pi K]_D K$.
 - o Evidences of direct CPV in $B_u \rightarrow [\pi\pi]_D K$ and $B_u \rightarrow [KK]_D K$.
- Important results from B_s system at LHCb: see Gaia Lanfranchi's talk.

LHCb will collect another 1.5 fb⁻¹ during 2012 run at 8 TeV center-of-mass energy.

Stay tunned!