CP violation and Rare Decays (a selected list of topics)

Gaia Lanfranchi (INFN & CERN)

on behalf of the LHCb Collaboration including ATLAS,Babar, Belle, CDF, CMS, D0 results

Les Rencontres de Blois -2012

1) Xth century: birth of the Blois castle

physics model: Aristotle's model with the Sun, the Moon, the planets and the sphere of fixed stars rotating around the Earth
anomalies: Ptolemy's epicycles to describe the motions of planets

1) Xth century: birth of the Blois castle

physics model: Aristotle's model with the Sun, the Moon, the planets and the sphere of fixed stars rotating around the Earth
anomalies: Ptolemy's epicycles to describe the motions of planets

2) 17th century: end of the construction of the Blois castle

- solution: Galileo demonstrated that the observed motions of celestial objects can be explained without putting the Earth at rest in the center of the universe.

1) Xth century: birth of the Blois castle

physics model: Aristotle's model with the Sun, the Moon, the planets and the sphere of fixed stars rotating around the Earth
anomalies: Ptolemy's epicycles to describe the motions of planets

2) 17th century: end of the construction of the Blois castle

- solution: Galileo demonstrated that the observed motions of celestial objects can be explained without putting the Earth at rest in the center of the universe.

3) End of 19th century: renovation of the Blois castle

- physics model: Newton's classical physics, Maxwell's electromagnetic theory, Clausius's thermodynamics

- anomalies: black body spectrum

1) Xth century: birth of the Blois castle

physics model: Aristotle's model with the Sun, the Moon, the planets and the sphere of fixed stars rotating around the Earth
anomalies: Ptolemy's epicycles to describe the motions of planets

2) 17th century: end of the construction of the Blois castle

- solution: Galileo demonstrated that the observed motions of celestial objects can be explained without putting the Earth at rest in the center of the universe.

3) End of 19th century: renovation of the Blois castle

- physics model: Newton's classical physics, Maxwell's electromagnetic theory, Clausius's thermodynamics

- anomalies: black body spectrum

- solution: 1901: Planck describes the black body spectrum as a system of oscillators each of them with energy $\varepsilon = h v \rightarrow the \ birth \ of \ quantum \ mechanics$

4) XXIst century: Les rencontres de Blois 2012

physics model: the Standard Model with the CKM mechanism controlling the weak interactions between quarks
anomalies: the content of this talk

Evolution of the CKM picture in the last 10 years

The impressive success of CKM mechanism as the main source of flavor and CPV (the legacy of Belle, Babar, CDF and D0)

A world wide effort (some of the main players in the heavy quark sector)

A world wide effort

(some of the main players in the heavy quark sector)

....That is keeping going....

A world wide effort

(some of the main players in the heavy quark sector)

But still a lot of open questions:

Strategies for indirect NP search

□ Improve measurement precision of CKM elements

- -Compare measurements of same quantity, which may or may not be sensitive to NP
- -Extract all CKM angles and sides in many different ways
 - any inconsistency will be a sign of New Physics

Precision CKM metrology, including NP-free determinations of CKM angle γ

 Measure FCNC transitions, where New Physics is more likely to emerge, and compare to predictions
 Single B decay

-e.g. OPE expansion for $b \rightarrow s$ transitions:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu) O_i(\mu)}_{i \in I_{eff}} + \underbrace{C'_i(\mu) O'_i(\mu)}_{i \in I_{eff}} \right]$$

left-handed part

right -handed part suppressed in SM Single B decay measurements with NP discovery potential

_	i - 12	Tree
	i = 3 - 6,8	Gluon penguin
	i = 7	Photon penguin
	i = 9,10	Electroweak penguin
	i = S	Higgs (scalar) penguin
	i = P	Pseudoscalar penguin

• add new long-distance operators O_i^(')

• modify C_i^(') short-distance Wilson coefficients

—New Physics may

Outline

1) BR(B $\rightarrow \tau v$) or sin(2 β)?

2) The "strange" brother: CPV in B_s

- 3) New physics in $B_s \&/or B_d$ mixing?
- 4) The angle γ

5) CPV in charm

6) EW penguins: latest results

7) BR($B_s \rightarrow \mu\mu$): status of the art

1) BR(B $\rightarrow \tau v$) or sin2 β ?

Chateau de Blois: Louis XII roi de France

The CKM matrix: the first unitarity triangle

Multiplying the 1st and 3rd column of the CKM matrix we have the first triangle of unitarity with the well known angles (α, β, γ) (or $\phi 1, \phi 2, \phi 3$)

$$V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

http://ckmfitter.in2p3.fr/

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right),$$

$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right),$$

$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right).$$

5

 \Box The indirect determination of sin2 β deviates by 2.7 σ from the current WA for direct determination.

 \Box The BR(B $\rightarrow \tau v$) and the resulting value of $|V_{ub}|$ (BR(B $\rightarrow \tau v$)~ $f_B^2|V_{ub}|^2$) differ by 2.8 σ from the predictions of global fit (which is dominated by sin(2 β) value)

 \Box The indirect determination of sin2 β deviates by 2.7 σ from the current WA for direct determination.

 \Box The BR(B $\rightarrow \tau v$) and the resulting value of $|V_{ub}|$ (BR(B $\rightarrow \tau v$)~ $f_B^2|V_{ub}|^2$) differ by 2.8 σ from the predictions of global fit (which is dominated by sin(2 β) value)

BR(B→τν) too high or sin(2β) too low The BR(B→τν) enhancement cannot be explained by the decay constant (known at 10% level in LQCD)

6

 \Box The indirect determination of sin2 β deviates by 2.7 σ from the current WA for direct determination.

 \Box The BR(B $\rightarrow \tau v$) and the resulting value of $|V_{ub}|$ (BR(B $\rightarrow \tau v$)~ $f_B^2|V_{ub}|^2$) differ by 2.8 σ from the predictions of global fit (which is dominated by sin(2 β) value)

New $sin(2\beta)$ result from Belle based on full dataset [arXiv 1201.0238] $sin2\beta = 0.667 \pm 0.023(stat) \pm 0.012(syst)$ confirms with unprecedented accuracy previous measurements

 \Box The indirect determination of sin2 β deviates by 2.7 σ from the current WA for direct determination.

 \Box The BR(B $\rightarrow \tau v$) and the resulting value of $|V_{ub}|$ (BR(B $\rightarrow \tau v$)~ $f_B^2|V_{ub}|^2$) differ by 2.8 σ from the predictions of global fit (which is dominated by sin(2 β) value)

- 1) Charged Higgs contribution (sensitive to H-b-u) in BR($B \rightarrow \tau v$)?
- 2) New Physics is decays with a τ lepton in the final state? also 3.4 σ excess seen in B→D(*) τ ν (H-b-c) over SM predictions [Babar: 1205.5442]
 3) New phases in B_d mixing? Let's see the "strange" brother of sin(2β) 6

2) The "strange" brother: the mixing-induced CPV phase in B_s system

chateau de Blois: gargouille

Mixing-induced CPV phase in B_s system

Golden channel for studying CPV in B_s system is $B_s \rightarrow J/\psi \phi$, the "strange" brother of $B^0 \rightarrow J/\psi K^0$

Mixing-induced CPV phase in B_s system

Golden channel for studying CPV in B_s system is $B_s \rightarrow J/\psi \phi$, the "strange" brother of $B^0 \rightarrow J/\psi K^0$

The SM contribution to the mixing-induced phase is:

$$\phi_{s}^{SM} = \phi_{s}^{M} - 2\phi_{s}^{D} \simeq -2\beta_{s} = -2\arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) = -(2.1 \pm 0.1)^{\circ}$$

$$\begin{array}{l} \text{Lenz,Nierste,CKMFitter}\\ arXiv:1203.0238\end{array}$$
Which is phase of the "squashed" triangle obtained by multiplying the 2nd and 3rd columns of CKM matrix
$$V_{CKM} \equiv V_{L}^{u}V_{L}^{d\dagger} = \begin{pmatrix} V_{ud} \\ V_{cd} \\ V_{td} \\ V_{td} \\ V_{ts} \\ V_{tb} \\$$

Mixing-induced CPV phase in B_s system

Golden channel for studying CPV in B_s system is $B_s \rightarrow J/\psi \phi$, the "strange" brother of $B^0 \rightarrow J/\psi K^0$

The SM contribution to the mixing-induced phase is:

$$\phi_{\rm s}^{\rm SM} = \phi_{\rm s}^{\rm M} - 2\phi_{\rm s}^{D} \simeq -2\beta_{s} = -2\arg\left(-\underbrace{\bigvee_{\rm ts}^{\rm mixing}}_{\rm decay}\right) = -(2.1\pm0.1)^{\circ} \begin{array}{c} {\rm Lenz, Nierste, CKMFitter}_{\rm arXiv:1203.0238} \\ \end{array}$$

 ϕ s is very sensitive to New Physics contributions in B_s mixing and provides an excellent lab to look for new sources of CPV:

$$\phi_{\rm s} = \phi_{\rm s}^{\rm SM} + \phi_{\rm s}^{\rm NP}$$

A bit of history

- 2007: first tagged analysis by CDF, followed by D0
- **2009**: 2.1 σ deviations from SM in CDF+D0 combination [DØ Note 5928-CONF]
- **2010**: D0 same-sign dimuon asymmetry A_{sl}^{b} in 6.1 fb⁻¹ showed 3.2 σ from SM, implying large ϕ_{s} (assuming NP in B_{s} in M_{12} only) [PRD82 (2010) 032001]
- 2011: D0 update of A^{b}_{sl} with 9 fb⁻¹ showed 3.9 σ deviation from SM [PRD84 (2011) 052007]
- \rightarrow a lot of excitement.....

Asymmetry

A bit of history

- 2007: first tagged analysis by CDF, followed by D0
- **2009:** 2.1σ deviations from SM in CDF+D0 combination [DØ Note 5928-CONF]
- **2010**: D0 same-sign dimuon asymmetry A_{sl}^{b} in 6.1fb⁻¹ showed 3.2 σ from SM, implying large ϕ_{s} (assuming NP in B_{s} in M_{12} only) [PRD82 (2010) 032001]
- 2011: D0 update of A_{sl}^{b} with 9 fb⁻¹ showed 3.9 σ deviation from SM [PRD84 (2011) 052007]

....but then larger dataset allowed to pin down the error on ϕ s.....

Summer 2011:

first LHCb tagged analysis result, 0.34 fb⁻¹

[PRL 108 (2012) 101803],

CDF update with 5.2 fb⁻¹ [PRD85 (2012) 07002] D0 update with 8 fb⁻¹ [PRD85 (2012) 032006]

A bit of history

- 2007: first tagged analysis by CDF, followed by D0
- **2009:** 2.1σ deviations from SM in CDF+D0 combination [DØ Note 5928-CONF]
- **2010**: D0 same-sign dimuon asymmetry A_{sl}^{b} in 6.1fb⁻¹ showed 3.2 σ from SM, implying large ϕ_{s} (assuming NP in B_{s} in M_{12} only) [PRD82 (2010) 032001]
- 2011: D0 update of A_{sl}^{b} with 9 fb⁻¹ showed 3.9 σ deviation from SM [PRD84 (2011) 052007]

....but then larger dataset allowed to pin down the error on ϕ s.....

Summer 2011:

Here $B_s \rightarrow J/\psi \phi$: LHCb latest result [1fb⁻¹]

Full fit of tagged and untagged rates as a function of B_s mass, proper time and transversity angles: LHCb-CONF-2012-002, 1/fb

 $B_s \rightarrow J/\psi$ KK final state is a mixture Events / 0.2 ps 01400 LHCb Preliminary LHCb Preliminary 1 fb⁻¹ Events/ 1000 of CP-even and CP-odd eigenstates 10^{3} so angular analysis needed 800 CP+ 10² **≥**2500 600F CP 1 fb⁻¹ data 400F Events / 2 12000 1500 CPsia. component ~21200 10 200 bka, component B events 2 -0.5 0.5 0 8 -1 Proper time t [ps] $\cos \theta$ - 1600 O <u>8</u>1400 LHCb Preliminary LHCb Preliminary 1000 **~1400** Lvents / 1000 E:1200 Events/ 800 800 500 800 СР÷ CP: 600 5350 5400 5450 600⁻ 5300 B_e mass [MeV] CP-400 400 CP B 200 В 200 0 0∟ -1 -0.5 0.5 0 -2 0 2 φ **[rad]** $\cos \psi$ CP- : $B_s \rightarrow J/\psi \phi$ signal with CP+ : $B_s \rightarrow J/\psi \phi$ signal with **CP-even** final state CP-odd final state : Bs $\rightarrow J/\psi KK$ signal with **B** : combinatorial S 9 $J_{KK} = 0$ (S-wave, CP-odd) background

$B_s \rightarrow J/\psi \phi$: LHCb latest result [1fb⁻¹]

Full fit of tagged and untagged rates as a function of B_s mass, proper time and transversity angles: LHCb-CONF-2012-002, 1/fb

LHCh

~11000 signal events

10

8

Opposite side tagging and same side tagging (first half of Run II data)

Results:

6

 $\beta_{s}^{J/\psi\varphi} \in [-\pi/2, -1.51] \cup [-0.06, 0.30] \cup [1.26, \pi/2] (68\% \text{ C.L.})$

• Representation of latest results (pictorial view for illustration only):

CPV in $B_s \rightarrow J/\psi \pi^+\pi^- + \text{combined}$

LHCb-PAPER-2012-006

13

arXiv 1204.5675

- LHCb has measured ϕ s also in B_s $\rightarrow J/\psi \pi^+\pi^$ ullet
 - consider $775 < m(\pi\pi) < 1550 \text{ MeV/c}^2$
 - submitted to PLB - angular analysis shows CP⁻ fraction is > 97.7% at 95% CL

Combined preliminary LHCb J/ $\psi \phi$ +J/ $\psi \pi \pi$ result (1 fb⁻¹): $\phi_{\rm s} = -0.002 \pm 0.083 \pm 0.027$

B_s system: status-of-the-art

Everything in good agreement with SM preditions..

	SM predictions [Lenz & Nierste, 1106.6308]	Status before 2011	status after 2011
$\Delta M_s [ps^{-1}]$	17.3±2.6	17.70±0.08 [CDF]	17.73±0.05 [CDF+ LHCb]
$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	0.087 ± 0.021	$0.154^{+0.054}_{-0.070}(0.9\sigma)$ [CDF & D0]	0.116±0.019 (1σ) [LHCb, 1fb ⁻¹]
$\varphi_{J/\psi\varphi}[^\circ]$	-2.1 ± 0.1	-44 ⁺¹⁷ ₋₂₁ (2.3σ) [CDF & D0]	-0.06±6 [LHCb]

B_s system: status-of-the-art

..... But A_{sl} that (still) shows 3.9 σ deviations from SM predictions:

	SM predictions [Lenz & Nierste, 1106.6308]	Status before 2011	Status after 2011
$\Delta M_s [ps^{-1}]$	17.3±2.6	17.70±0.08 [CDF]	17.73±0.05 [CDF+ LHCb]
$\Delta\Gamma_{\rm s} [{\rm ps}^{-1}]$	0.087±0.021	$0.154^{+0.054}_{-0.070}(0.9\sigma)$ [CDF & D0]	0.116±0.019 (1σ) [LHCb, 1fb ⁻¹]
$\varphi_{J/\psi} \ [^\circ]$	-2.1 ± 0.1	-44 ⁺¹⁷ ₋₂₁ (2.3σ) [CDF & D0]	-0.06±6 [LHCb]
A _{sl} [10 ⁻⁴]	-2.8 ± 0.5	-85±28 (3.0 σ) [D0]	$-79 \pm 20 (3.9 \sigma)$ [D0,PRD84 (2011) 052007]
$a_{fs}^{(s)}$ [10 ⁻⁵]	-1.9 ± 0.3	$-1200 \pm 700 \ (1.7 \ \sigma)$	$-1300 \pm 800 \ (1.5\sigma)$

 $a_{fs}^{(s)}$ calculated from measured A_{sl} & $a_{fs}^{(d)} = (-4.7 \pm 4.6) \times 10^{-3}$ from Babar&Belle [HFAG,arXiv:1010.1589]

The semi-leptonic asymmetry

See I. Bertram's talk

 D_q^+ The D0 semileptonic asymmetry: u^{-} \overline{B}_{a}^{0} $\frac{-N_{b\overline{b}}}{N_{b}} = C_d a^d_{sl} + C_s a^s_{sl}$ [HFAG, 1010.1589 and updates at - $C_d \sim 0.6$ and $C_s \sim 0.4$ depend on the production rate of $B_{d,s}$ http://www.slac.stanford.edu/xorg/hfag - a_{sl} is the CP asymmetry in flavor-specific modes: $= \frac{\Gamma(B^{0}_{s,d} \to \mu^{+}X) - \Gamma(B^{0}_{s,d} \to \mu^{-}X)}{\Gamma(\overline{B^{0}}_{s,d} \to \mu^{+}X) + \Gamma(B^{0}_{s,d} \to \mu^{-}X)} = \frac{\Delta\Gamma_{s,d}}{\Delta M_{s,d}} \tan\varphi_{s,d}$ h with

$$\varphi_s = arg(M^s_{12}/\Gamma^s_{12}) \sim (0.22\pm0.06)^\circ$$
 Lenz, Nierste '1

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

This phase contains is still related to the box diagram as β s but it is a different quantity (10 times smaller in fact). However, if NP modifies M₁₂, it modifies also β s.

15

The semi-leptonic asymmetry

3) New physics in $B_d \&/or B_s$ mixing?

Blois castle, Louis XII fireplace

 B_s
New Physics in M_{12}^{s} ? 2010 vs 2012

Use parameterization of NP in: $M_{12}^{s} = M_{12}^{(SM,s)} x \Delta_{s}$ with $\Delta_{s} = |\Delta_{s}| e^{i\varphi(NP)}$ [Lenz, Nierste and CKMFitter, arXiv 1203.0238]

Tension in the B_s system (~2.7 σ in 2010) is gone thanks to the latest ϕ_s results but the discrepancy with A_{sl} is larger

New Physics in M_{12}^{d} ? 2010 vs 2012

Use parameterization of NP in: $M_{12}^{d} = M_{12}^{(SM,d)} x \Delta_{d}$ with $\Delta_{d} = |\Delta_{d}| e^{i\varphi(NP)}$ [Lenz, Nierste and CKMFitter, arXiv 1203.0238]

Tension in the B_d system augmented $(2.7\sigma \rightarrow 3.6 \sigma)$ but overall tension with SM decreased Allowing for a new phase in B_d mixing could solve also the sin2 β vs BR(B $\rightarrow \tau v$) tension [Lenz, Nierste et CKMFitter, arXiv 1203.0238]

4) The angle γ

Blois castle, detail

The CKM matrix: γ angle

The tension in the ρ - η plane can profit by an accurate measurement of the angle γ

1.5

1.0

0.0

-0.5

-1.0

-1.5

-1.0

excluded area has CL > 0.

sin 2B

α

-0.5

0.0

0.5

-

1.0

 $\Delta m_d \& \Delta m_s$

Δm

cos 26 <

2.0

1.5

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right).$$

Despite the heroic efforts at the B-factories and CDF , γ error is still dominated by experimental uncertainties:

(direct) = $(66 \pm 12)^{\circ}$ (indirect) = $(67.2^{+4.4}_{-4.6})^{\circ}$

CKMFitter 2012, preliminary

Measuring γ via tree-level dominated processes

Tree level dominated processes allow clean extraction of gamma: \rightarrow access interference effects involving the phase between V_{ub} and V_{cb} Time-integrated analysis uses B[±] \rightarrow D^(*)K[±] with:

- D \rightarrow CP eigenstates (GLW)

<u>Gronau, Wyler Phys.Lett.B265:172-176,1991</u>, (GLW),

- $D^{(*)} \rightarrow \text{flavour specific states (ADS)} \xrightarrow{\text{Gronau, London Phys.Lett.B253:483-488,1991 (GLW)}}{A_{\text{transleric states sta$
- D \rightarrow multi-body states (GGSZ):

Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri,Grossman, Solfer,Zupan, Phys.Rev.D 68,0504018 (2003) (GGSZ/

The interference between color-suppressed and color-favored diagrams allows to extract the CP-violating phase gamma.

Measuring γ via tree-level dominated processes

Tree level dominated processes allow clean extraction of gamma: \rightarrow access interference effects involving the phase between V_{ub} and V_{cb} Time-integrated analysis uses B[±] \rightarrow D^(*)K[±] with:

- D \rightarrow CP eigenstates (GLW)
- $D^{(*)} \rightarrow$ flavour specific states (ADS)
- D \rightarrow multi-body states (GGSZ):

> Combined "ADS+GLW" strategy:

— Measure 16 rates: $B^- \rightarrow DK^-(\pi^-)$ and $B^+ \rightarrow DK^+(\pi^+)$ with $D \rightarrow K^-\pi^+$, $K^+\pi^-$, $\pi^+\pi^-$, $K^+K^$ and build up 6 CPV asymmetries and 3 ratios of partial widths and 4 charged separated partial widths of ADS suppressed-to-favoured mode

> Counting experiment. All parameters (r_B, δ_B =ratio and phase between suppressed & allowed amplitudes, r_D, δ_D = ratio and phase between doubly Cabibbo suppressed and Cabibbo-favoured amplitudes) can be extracted simultaneously analyzing several decay channels (although CLEO-c input for δ_D helps).

 $B^{\pm} \rightarrow DK^{\pm} \text{ and } B^{\pm} \rightarrow D\pi^{\pm}$

 $B^{\pm} \rightarrow DK^{\pm} \text{ and } B^{\pm} \rightarrow D\pi^{\pm}$

 $B^{\pm} \rightarrow DK^{\pm} \text{ and } B^{\pm} \rightarrow D\pi^{\pm}$

 $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$

A_{ADS} and R_{ADS}: HFAG averages

Where available, LHCb results are the most precise measurements. B-factories dominate the other modes

A_{CP} and R_{CP}: HFAG averages

Where available, LHCb results are the most precise measurements. B-factories dominate the other modes

24

γ via tree-level dominated processes: combination

Most precise determination of ADS/GLW observables does not translate
directly into most precise γ measurement.
→need input from many methods to pin down γ.

See A. Gomez's talk for a review of other methods to extract γ (time-dependent methods with Bs \rightarrow Ds K and with B \rightarrow hh' decays)

γ via tree-level dominated processes: combination

Most precise determination of ADS/GLW observables does not translate
directly into most precise γ measurement.
→need input from many methods to pin down γ.

25

See A. Gomez's talk for a review of other methods to extract γ (time-dependent methods with Bs \rightarrow Ds K and with B \rightarrow hh' decays)

For example the GGSZ method (Dalitz plot analysis of $B \rightarrow D K$ with $D \rightarrow K_{s}^{0} h^{+} h^{-}$ decay) provides the best constraint to γ with B-factories data: Brand new result from Belle based on a model-independent analysis [Belle,arXiv:1204.6561]

 $\gamma = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3_{\delta D \text{ from Cleo}})^{\circ}$

LHCb expects to pin down the error on gamma to 5° by 2018: it will be interesting...

5) The charm sector

Chateau de Blois: Colombina by Francesco Melzi

CPV in charm

Large $D^0 - D^0$ mixing discovered in 2007 by Babar and Belle and the new LHCb and CDF results on direct CP violation in charm system are giving new impetus to this field.

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda \\ -\lambda & 1 - \lambda^2/2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

To first order:

1) No mixing if GIM is fully at work $(m_d == m_s)$

2) No CPV phase if CKM is fully at work (no phase with two generations) So "in principle" large mixing and large CPV should be sign of New Physics.....

CPV in charm

Large $D^0 - \overline{D^0}$ mixing discovered in 2007 by Babar and Belle and the new LHCb and CDF results on direct CP violation in charm system are giving new impetus to this field.

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda \\ -\lambda & 1 - \lambda^2/2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

To first order:

1) No mixing if GIM is fully at work $(m_d == m_s)$

2) No CPV phase if CKM is fully at work (no phase with two generations) So "in principle" large mixing and large CPV should be sign of New Physics.....

Three types of CP violation:

 \rightarrow In decay: amplitudes for a process and its conjugate differ (direct)

 \rightarrow In mixing: rates of $D^0 \rightarrow \overline{D}^0$ and $\overline{D}^0 \rightarrow D^0$ differ

 \rightarrow in interference between mixing and decay diagrams

26

Charm: indirect CPV

In SM indirect CPV expected very small and universal between CP eigenstates (10⁻³ for CPV parameters, 10⁻⁵ for observables like A_{Γ})

 \rightarrow but it can be enhanced by NP to o(%). [Bibliography too long, see spare slides]

Non perturbative: hard to predict in SM Currently: |x|<0.01, |y|<0.01(PRD69,114021)

"No-mixing" excluded at 10.2 σ:

CPV in mixing compatible with zero

Present constraints on CPV weak because CPV ~ $x_D \sin(2\varphi_D)$ and $x_D \sim 1\%$ \rightarrow required sub-0.1% precision for CPV sensitivity!

27

Charm: indirect CPV

Example mixing analysis is measurement of $"y_{CP}"$, which is D⁰ width splitting parameter modified by CP-violating effects. Comparison to pure "y" measurements probes for CP-violation, as does measurement of pure CP-violating observable A $_{\Gamma}$

A_{Γ}: compare D⁰ and \overline{D}^0 lifetimes in KK final state [tagged samples]

$$A_{\Gamma} = \frac{\tau(\overline{D}{}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}{}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

y_{CP}: compare lifetime of $D^0 \rightarrow CP$ -eigenstate, eg. KK or $\pi\pi$, to $D^0 \rightarrow$ non-eigenstate eg. K π [untagged samples]

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

LHCb results based on 2010 data (~29 pb⁻¹) [LHCb,arXiv:1112.4698, subm. To JHEP] not yet competitive with the world average

 $A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)\%$

c.f. WA of $(0.12\pm0.25)\%$

 $y_{CP} = (0.55 \pm 0.63 \pm 0.41)\%$

c.f. WA of $(1.11\pm0.22)\%$

29

Brand new results from B-factories presented two weeks ago at CHARM 2012.

Belle (Staric): measurements of D⁰-D⁰ mixing in $D^0 \rightarrow K^+ K^-$, $\pi + \pi$ - decays updated with full dataset (976 fb⁻¹):

 y_{CP} = (+1.11 ± 0.22 ± 0.11) % (4.5 σ) → Most sensitive and most significant measurement of any mixing parameter up to now.

$\Delta \Gamma = (-0.03 \pm 0.20 \pm 0.08) \%$ \rightarrow Consistent with no indirect CPV

Babar (Neri): final value for y_{CP} and $\Delta Y == (1+y_{CP})A_{\Gamma}$ using 468 fb⁻¹ of data:

 $y_{CP} = [0.720 \pm 0.180 \text{ (stat)} \pm 0.124 \text{ (syst)}]\%$ $\Delta Y = [0.088 \pm 0.255 \text{ (stat)} \pm 0.058 \text{ (syst)}]\%$

No mixing excluded at 3.3 σ level No CPV observed

See M. Coombes's & I. Bertram's talks

Direct CPV in $D^0 \rightarrow \pi^+\pi^-$, K^+K^- :

CPV in mixing (indirect) can be related to direct CPV via the relation:

$$A_{CP}(h^+h^-) = a_{CP}^{\mathrm{dir}}(h^+h^-) + \frac{\langle t \rangle}{\tau} a_{CP}^{\mathrm{ind}}(h^+h^-) \qquad A_{\mathrm{CP}}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

Considering $\pi\pi$ or KK final states we can build the difference:

$$A_{CP}(K^+K^-) - A_{CP}(\pi + \pi -) = \Delta a_{CP} (direct) + \Delta < t > /\tau a_{CP} ind$$

HCP 2011: LHCb, 620 pb⁻¹: first evidence (3.5 σ) of CPV in charm:

$$\Delta A_{\text{CP}} = A_{\text{CP}}(K^+K^-) - A_{\text{CP}}(\pi^+\pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$$

LHCb, PRL 108 (2012) 11602

Moriond 2012: CDF, 9.6 fb⁻¹, confirms this result

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.62 \pm 0.21 \pm 0.10) \%$$

CDF, PRD 85 (2012) 012009

Combination of LHCb and CDF results in a 3.8 σ deviations from zero.

See M. Coombes's & I. Bertram's talks

EPS 2011 – July 2011

What can we conclude from this result? Is it SM or New Physics?

31

6) EW penguins 7) $B_s \rightarrow \mu\mu$: status of the art (single decay measurements with NP discovery potential)

Chateau de Blois: royal emblems

Strategies for indirect NP search

Improve measurement precision of CKM elements

- -Compare measurements of same quantity, which may or may not be sensitive to NP
- -Extract all CKM angles and sides in many different ways
 - any inconsistency will be a sign of New Physics

Precision CKM metrology, including NP-free determinations of CKM angle γ

 Measure FCNC transitions, where New Physics is more likely to emerge, and compare to predictions
 Single B decay

-e.g. OPE expansion for b \rightarrow s transitions:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu) O_i(\mu)}_{i,j} + \underbrace{C_i'(\mu) O_i'(\mu)}_{i,j} + \underbrace{C_i'(\mu) O_i'(\mu)}_{i,j} \right]$$

left-handed part

right -handed part suppressed in SM Single B decay measurements with NP discovery potential

i = 1,2	Tree
i = 3 - 6,8	Gluon penguin
i = 7	Photon penguin
i = 9,10	Electroweak penguin
i = S	Higgs (scalar) penguin
i = P	Pseudoscalar penguin

- —New Physics may
 - modify $C_i^{(')}$ short-distance Wilson coefficients
 - add new long-distance operators $O_i^{(')}$

Search for NP in $B \rightarrow K^{(*)}l^+l^-$

 $B \rightarrow K^{(*)}l^+ l^-$ are FCNC decays, forbidden at tree level. Three effective Wilson coefficients can contribute:

- $C_7^{(1)}$ from γ penguin (also in b \rightarrow s γ process)
- C_9 (')(C_{10} (')) from vector (axial vector) part of W/Z box

New Physics can modify the helicity structure (angular distributions):

Interference of axial & vector currents give direct access to relative phases of diagrams involved [for example, W. Altmannshofer et al. JHEP 0901:019, 2009]

[see R. Vazquez and S. Emery's talks]

Search for NP in $B \rightarrow K^{(*)}l^+l^-$

Partial BF and angular observables have been measured by Babar, Belle, CDF and LHCb: all show good agreement with SM predictions (within the uncertainties)

see R. Vazquez

& S. Emery's talks

see R. Vazquez's talk

HCh

Search for NP in $B \rightarrow K^{(*)}l^+l^-$

Measurement of the zero crossing of A_{FB} gives access to ratio of Wilson coefficients C_7^{eff}/C_9^{eff} The zero crossing point is largely free from form-factor uncertainties Extracted through a 2D fit to the forward and backward-going m(B⁰) and q² distributions

Search for NP in $B_{s,d} \rightarrow \mu\mu$ decays

 $B_{(d,s)} \rightarrow \mu\mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

Double suppressed decay: FCNC process and helicity suppressed:

 \rightarrow very small in the Standard Model but well predicted:

 $B_s \rightarrow \mu^+ \mu^- = (3.2 \pm 0.2) \times 10^{-9}$

$$B_d \rightarrow \mu^+ \mu^- = (1.0 \pm 0.1) \times 10^{-10}$$

Buras et al., arXiv:1007.5291 and references therein

Search for NP in $B_{s,d} \rightarrow \mu\mu$ decays

 $B_{(d,s)} \rightarrow \mu\mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

Double suppressed decay: FCNC process and helicity suppressed: → very small in the Standard Model but well predicted:

$$B_s \rightarrow \mu^+ \mu^- = (3.2 \pm 0.2) \times 10^{-9}$$

$$B_d \rightarrow \mu^+ \mu^- = (1.0 \pm 0.1) \times 10^{-10}$$

Buras et al., arXiv:1007.5291 and references therein

 \rightarrow Sensitive to NP contributions in the scalar/pseudo scalar sector:

$$(c_{S,P}^{MSSM})^2 \propto \left(\frac{m_b m_\mu \tan^3 \beta}{M_A^2}\right)^2$$

MSSM, large tan β approximation 36

see R. Vazquez's, I. Bertram and L.Oakes talks

37

see R. Vazquez's, I. Bertram and L.Oakes talks

Search for NP in $B_{s,d} \rightarrow \mu\mu$ decays

..... But which is the BR? 3 σ observation possible if BR=BR(SM) at the LHC with 2011+2012 data

Impact of $B_s^{} \rightarrow \mu^+\mu^-$ on global SUSY fits

- Global fit include many results:
 - Higgs and SUSY searches at LHC, dark matter searches at XENON100, EW and B physics measurements (such as $b \rightarrow s\gamma$, $B^+ \rightarrow \tau v$, $B_s \rightarrow \mu \mu$), g–2
- A constrained version of MSSM, the CMSSM:

Impact of $B_s \rightarrow \mu^+\mu^-$ on global SUSY fits

- Global fit include many results:
 - Higgs and SUSY searches at LHC, dark matter searches at XENON100, EW and B physics measurements (such as $b \rightarrow s\gamma$, $B^+ \rightarrow \tau\nu$, $B_s \rightarrow \mu\mu$), g–2
- A constrained version of MSSM, the CMSSM:

39

Recent $B_s \rightarrow \mu\mu$ results disfavor models with NP at the TeV scale and large tan β

Summary & Open Questions

sin(2β) vs BR(B→τν): → BR too high or sin(2β) too low?
 The "strange" brother: CPV in Bs

 $\rightarrow \phi_s$ in agreement with SM predictions

- 3) New physics in $B_s \& / \text{or } B_d \text{ mixing}? \rightarrow A_{sl} \text{ needs independent checks}$
- 4) The γ angle \rightarrow more precision needed
- 5) CPV in charm \rightarrow NP or SM?

6) EW penguins in agreement with SM predictions \rightarrow MFV or NP at 10 TeV scale? 7) BR(B_s $\rightarrow \mu\mu$):

 \rightarrow rapidly approaching SM value (maybe lower than SM?)

 \rightarrow NP at the TeV scale in models with large tan β highly disfavored

Brief history of the Blois castle:

4) XXIst century: Les Rencontres de Blois 2012

- physics model: the Standard Model with the CKM mechanism controlling the interactions between quarks

- anomalies: many

(....which is the end of the story?)

Parallel sessions on Heavy Flavour (Tuesday & Wednesday afternoon)

CP violation in b→s penguin and T,CPT violation at BaBar and Belle – S. Emery CP violation in the beauty system at LHCb – A. Gomez CP violation in charm and tau at BaBar and Belle – D. Epifanov CP violation in the charm system at LHCb – M. Coombes CKM related measurements (including CPV) at BaBar and Belle – J. Dalseno Rare beauty and charm decays at LHCb - Ricardo Vazquez Gomez Recent Heavy Flavor Results from the Tevatron - Iain Bertram Hadronic B decays at LHCb - Thomas Latham b-physics with ATLAS and CMS - Louise Oakes

STOP

- μ^+ Exclusive B^0_s channel with $\Phi(1020)$ resonance : ν_{μ} \triangleright
- The main formula again (untagged): $B_s^{\bar{b}} B_s^{0}$ \triangleright

$$\frac{\Gamma(D_s^-\mu^+\nu) - \Gamma(D_s^+\mu^-\overline{\nu})}{\Gamma(D_s^-\mu^+\nu) + \Gamma(D_s^+\mu^-\overline{\nu})} = \frac{a_{fs}^s}{2} + \left(a_p - \frac{a_{fs}^s}{2}\right) \frac{\int_{t=0}^{\infty} e^{-\Gamma t} \cos(\Delta M t) \varepsilon(t) dt}{\int_{t=0}^{\infty} e^{-\Gamma t} \cosh(\frac{\Delta\Gamma}{2} t) \varepsilon(t) dt}$$

$$\varepsilon(t) \text{ is the detector acceptance function.} \qquad \text{IF}$$

- \succ $\varepsilon(t)$ is the detector acceptance function.
- The fraction of integrals, IF, has been evaluated as ~ 0.02 \succ
- a_p is at most a few percent. Thus: $a_p * 0.02 \approx 10^{-4}$. \triangleright

Method to resolve the ambiguity [Y. Xie et al., JHEP 09 (2009) 074]

Two-fold ambiguity

$$(\phi_s, \Delta\Gamma_s, \delta_{\parallel} - \delta_0, \delta_{\perp} - \delta_0, \delta_s - \delta_0) \iff (\pi - \phi_s, -\Delta\Gamma_s, \delta_0 - \delta_{\parallel}, \pi + \delta_0 - \delta_{\perp}, \delta_0 - \delta_s)$$

K⁺K⁻ P-wave:

Phase of Breit-Wigner amplitude increases rapidly across $\phi(1020)$ mass region

$$BW(m_{KK}) = \frac{F_r F_D}{m_\phi^2 - m_{KK}^2 - im_\phi \Gamma(m_{KK})}$$

K⁺K⁻S-wave:

Phase of Flatté amplitude for $f_0(980)$ relatively flat (similar for non-resonance)

Phase difference between S- and P-wave amplitudes

Decreases rapidly across $\phi(1020)$ mass region

Resolution method: choose the solution with decreasing trend of δ_s - δ_P vs m_{KK} in the $\phi(1020)$ mass region

The dimuon asymmetry

The central value of the di μ asymmetry is larger than theoretically possible!

$$\begin{split} A_{sl}^{Max.} &\approx (0.594 \pm 0.022)(5.4 \pm 1.0) \cdot 10^{-3} \frac{\sin(\phi_d^{SM} + \phi_d^{\Delta})}{|\Delta_d|} \\ &+ (0.406 \pm 0.022)(5.0 \pm 1.1) \cdot 10^{-3} \frac{\sin(\phi_s^{SM} + \phi_s^{\Delta})}{|\Delta_s|} \\ &\approx (-3.1; -4.8[1\sigma]; -9.0[3\sigma]) \cdot 10^{-3} \\ A_{sl}^{D0} &= (-7.8 \pm 2.0) \cdot 10^{-3} \\ \end{split}$$
 A.L. 1108.1218

Possible solutions:

- HQE violated by $\mathcal{O}(200\% 3300\%)$ now excluded!
- Huge new physics in Γ_{12} ? see talk by Uli Haisch
- Contradiction to $B_s \rightarrow J/\psi \phi$ from LHCb? Penguins
- Stat. fluctuation (1.5 σ) of the D0 result? (Actual value is below -4.8 per mille?) Independent measurements of semi leptonic asymmetries needed!

B_s mixing frequency ΔM_s

 $\Delta m_s^{
m WA} = 17.731 \pm 0.045~{
m ps}^{-1}$ Δ ms (SM) = (17.3 ± 2.6) ps-1

Lenz, Nierste ar Xiv: 1102.4274

Experimental precision ahead of theory → Improved lattice results needed

36

Direct CPV in $B_{(s)} \rightarrow K\pi$

LHCb: PRL 108,201601 (2012) CDF: PRL 106,181802

28

For a discussion about γ extraction from $B_{(s)}$ \rightarrow hh' decays see A. Gomez's talk

Direct CPV violation in charm: bibliography

Explanations of the LHCb result in SM, and in NP models:

- Isidori et.al. arxiv:1103.5785 ⇒ NP explanation in a model independent way
- **B** Brod et.al. arxiv:1111.4987 \Rightarrow Large $1/m_c$ suppressed amplitude
- **P** Rozanov et.al. arxiv:1111.5000 \Rightarrow Large penguin in sequential 4th generation model
- Pirtskhalava et.al. arxiv:1112.5451 \Rightarrow Badly broken $SU(3)_F$ symmetry
- **D** Cheng et.al. arxiv:1201.0785 \Rightarrow Large weak penguin annihilation contribution
- Bhattacharya et.al. arxiv:1201.2351 \Rightarrow CP conserving NP in penguin
- Giudice et.al arxiv:1201.6204 \Rightarrow Left-right flavour mixing via chromomagnetic operator
- Altmannshofer et.al. arxiv:1202.2866 \Rightarrow Chirally enhanced chromomagnetic penguins
- Brod et.al. arxiv:1203.6659 ⇒ In SM via s- and d-quark penguin contraction
 - Bianco, Fabbri, Berson & Bigi, Riv. Nuovo Cimento 26N7 (2003)
 - Grossman, Kagan & Nir PRD 75, 036008 (2007)
 - Bigi, arXiv:0907.2950
 - Bobrowski, Lenz, Riedl & Rothwild, JHEP 03 009 (2010)
 - Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)
 - Feldmann, Nandi & Soni, arXiv:1202.3795

Charm: direct CPV

Direct CP violation can be larger in SM, very dependent on the final state (therefore we must search whenever we can): Negligible in Cabibbo-favoured modes (SM trees dominate) In generic singly Cabibbo-suppressed modes:

- up to $o(10^{-3})$ plausible
- few 10⁻³ possible:

Also direct CPV can be enhanced by NP, in principle to o(%)

[Bibliography too long, see spare slides]

See M. Coombes's & I. Bertram's talks

Direct CPV in D⁰ $\rightarrow \pi^+\pi^-$, K⁺K:

CPV in mixing (indirect) can be related to direct CPV via the relation:

$$A_{CP}(h^+h^-) = a_{CP}^{dir}(h^+h^-) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}(h^+h^-)$$

Considering $\pi\pi$ or KK final states we can build the difference:

$$A_{CP}(K^+K^-) - A_{CP}(\pi + \pi -) = \Delta a_{CP} (direct) + \Delta < t > /\tau a_{CP} ind$$

HCP 2011: LHCb, 620 pb⁻¹: first evidence (3.5 σ) of CPV in charm:

$$\Delta A_{\text{CP}} = A_{\text{CP}}(K^+K^-) - A_{\text{CP}}(\pi^+\pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$$

LHCb, PRL 108 (2012) 11602

Moriond 2012: CDF, 9.6 fb⁻¹, also measures the individual asymmetries:

 $A_{CP}(KK) = (-0.24 \pm 0.22 \pm 0.09)\%$ $A_{CP}(\pi\pi) = (+0.22 \pm 0.24 \pm 0.11)\%$

CDF, PRD 85 (2012) 012009

That seem to indicate equal and opposite effects as predicted by some theorists 36

Direct CPV in D⁰ $\rightarrow \pi^+\pi^-$, K⁺K⁻:

CPV in mixing (indirect) can be related to direct CPV via the relation:

$$A_{CP}(h^+h^-) = a_{CP}^{\text{dir}}(h^+h^-) + \frac{\langle t \rangle}{\tau} a_{CP}^{\text{ind}}(h^+h^-)$$

<t>/τ = 1 at B factories, ~2.5 at CDF (displaced trigger)

Considering $\pi\pi$ or KK final states we can build the difference:

Independent of the final state

$$A_{CP}(K^+K^-) - A_{CP}(\pi + \pi -) = \Delta a_{CP} (direct) + \Delta < t > /\tau a_{CP} ind$$

Where:
$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

Search for NP in $B \rightarrow K^{(*)}l^+l^-$

Partial BF and angular observables have been measured by Babar, Belle, CDF and LHCb: all show good agreement with SM predictions (within the uncertainties)

see R. Vazquez

& S. Emery's talks

20

10

5

15

 $q^2 \,[\text{GeV}^2/c^4]$

Impact of $B_s^{} \to \mu^+\mu^-$ on global SUSY fits

- Global fit include many results:
 - Higgs and SUSY searches at LHC, dark matter searches at XENON100, EW and B physics measurements (such as $b \rightarrow s\gamma$, $B^+ \rightarrow \tau\nu$, $B_s \rightarrow \mu\mu$), g–2
- Two variants of the MSSM:
 - $\Delta \chi^2$ profiles for $B_s \rightarrow \mu \mu$ (state as of December 2011)

O. Buchmueller et al. arXiv:1112.3564

Recent $B_s \rightarrow \mu\mu$ results disfavor models with NP at the TeV scale and large tan β