The CUORE Neutrinoless Double Beta Decay Experiment

Tom Banks, on behalf of the CUORE Collaboration (UC Berkeley, LBNL, LNGS)

24th Rencontres de Blois Particle Physics & Cosmology Blois, France 30 May 2012

Physics motivation

In the last decade, experiments convincingly established that neutrinos oscillate and therefore have mass

► However, oscillation experiments cannot determine the neutrino:

- 1. Mass hierarchy
- 2. Absolute mass scale
- 3. Dirac or Majorana nature $(v = \overline{v}?)$

• $0\nu\beta\beta$ decay offers a unique means to probe these parameters

$0v\beta\beta$ decay

- ► Extremely rare process ($T_{\frac{1}{2}}$ > 10²⁴ y), if it occurs at all
- ▶ Requires massive Majorana neutrinos $(v = \overline{v})$
- Violates lepton number = physics beyond SM

$0v\beta\beta$ decay

If $0\nu\beta\beta$ decay is observed, it would

- **1.** confirm neutrinos are Majorana particles (i.e., $v = \overline{v}$);
- 2. set constraints on the effective Majorana mass $\langle m_{\beta\beta} \rangle$, providing information about the absolute v mass scale;
- 3. provide information about the mass hierarchy.

$0v\beta\beta$ decay signature

Two simultaneous electrons with summed energy equal to the Q-value for $\beta\beta$ decay in the isotope under study

CUORE

Cryogenic Undergound Observatory for Rare Events

Primary objective is to search for $0\nu\beta\beta$ decay in ¹³⁰Te

CUORE program

2003-2008

11 kg ¹³⁰Te

COMPLETE

CUORE-O 2012–2014 11 kg ¹³⁰Te

CUORE 2014–2019 206 kg ¹³⁰Te

Cryogenic bolometers

Ultracold TeO₂ crystals function as highly sensitive calorimeters

Good energy resolution

High efficiency

Large source mass

No particle identification

Constraints on isotopes

Cryogenic bolometers

At T=10 mK, particle interactions produce produce measurable rises in crystal temperature Amplitude of the temperature pulse is proportional to deposited energy

Experimental method

The energy spectrum of detected pulses is compiled...

Experimental method

The energy spectrum of detected pulses is compiled...

... and the signature of $0v\beta\beta$ in ¹³⁰Te would be a small peak at ~ 2527 keV.

¹³⁰ Te as $0v\beta\beta$ decay isotope

- \blacktriangleright High natural abundance \rightarrow no enrichment necessary
- **>** Good Q-value above natural γ energies + large phase space

Location: LNGS, Italy

LNGS underground lab

- Gran Sasso National Lab
- Built off highway tunnel through mountain
- 1.4-km rock overburden reduces muon flux by 10⁶
- 3 experimental halls host
 15+ experiments

CUORE @ Hall A

CUORE hut -

_ Cuoricino/ CUORE-0 hut

Cuoricino

- Operated March 2003 May 2008
- 62 TeO₂ crystal bolometers of different sizes; some enriched in ¹³⁰Te or ¹²⁸Te
- ► 40.7 kg TeO₂ \rightarrow **11.3 kg** ¹³⁰Te

Cuoricino energy spectrum

Cuoricino backgrounds

There are three main sources of background in the region around the **Q** value:

- (~35%) Compton gammas from ²⁰⁸TI, from ²³²Th in cryostat
- (~55%) Degraded alphas from ²³⁸U and ²³²Th on copper surfaces
- (~10%) Degraded alphas from ²³⁸U and ²³²Th on crystal surfaces

Cuoricino results

No evidence of $0\nu\beta\beta$ decay in ¹³⁰Te

E. Andreotti et al. (CUORICINO Collaboration), Astropart. Phys. 34: 822–831 (2011) [arXiv:nucl-ex/1012.3266].

$\mathsf{Cuoricino} \longrightarrow \mathsf{CUORE}$

- ► Half-life sensitivity depends on detector parameters
- Sensitivity is the max signal that could be hidden by a background fluctuation (at specified confidence level)

$\mathsf{Cuoricino} \longrightarrow \mathsf{CUORE}$

- ► Half-life sensitivity depends on detector parameters
- Sensitivity is the max signal that could be hidden by a background fluctuation (at specified confidence level)

CUORE

Cryostat improvements

Cuoricino

- New custom dilution refrigerator
- ► Cryogen-free → more live time
- \blacktriangleright Better suspension \rightarrow less vibration
- More Pb shielding
- ► Cleaner

Detector improvements

- Cleaner crystals
- Cleaner copper, and less per kg TeO₂
- Cleaner assembly environment
- Less vibration in copper frames
- Better self-shielding & anticoincidence coverage

	Cuoricino	CUORE-0	CUORE
¹³⁰ Te mass (kg)	11	11	206
Background (c/keV/kg/y) @ 2528 keV	0.17	0.05	0.01
E resolution (keV) FWHM @ 2615 keV	7	5-6	5
〈m _{ββ} 〉(meV) @ 90% C.L.	300-710	200-500	40-90

Engineering & logistics

The primary experimental challenge is scaling up the bolometric apparatus...

CUORE status

Crystals in storage @ LNGS

Cryostat shields @ factory

Dilution unit test setup @ LNGS

- 85% of crystals delivered so far (836/988)
- Copper parts are being machined and cleaned
- 3 (of 6) cryostat vessels to be delivered to LNGS soon
- Dilution refrigerator delivered to LNGS (though some repairs needed)

CUORE hut

CUORE hut

Detector assembly

- Clean room commissioned in 2011
- Crystals are prepared and assembled into towers inside N₂-filled glove boxes

Crystal gluing

Crystal gluing

Robotic arm for handling crystals

Robot for mixing & dispensing glue

Semi-automated setup enables more precise & uniform gluing

Tower assembly line

Tower assembly line

1. Assembly box

2. Cabling box

3. Bonding box

4. Storage box

- Single station with 4 interchangeable glove boxes for specific tasks
- ▶ Must transform ~ 10,000 components (!) into 19 ultra-clean towers

Tower assembly line

First tower from CUORE assembly line

► Will be operated in former Cuoricino cryostat

Purpose:

- 1. Test CUORE assembly line
- 2. Surpass Cuoricino while CUORE is being assembled

CUORE-0 saga

Gluing (Oct 2011)

Assembly #1 (Oct 2011)

eroblems S

Success w/brandnew copper parts

(Apr 2012)

Cooldown #1 (Apr 2012)

Leak appeared in dilution refrigerator

Found problems w/copper parts

CUORE-0 saga

Uppermost heat exchanger

Cooldown #1 (Apr 2012)

Leak appeared in dilution refrigerator

CUORE-0 schedule

☑ Gluing in October 2011

✓ Assembly in April 2012

 \Box Cooldown in Summer 2012

□ Data taking 2012–2014(?)

Experimental sensitivities

Cuoricino: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) \ge 4.2 \times 10^{24} \text{ y} (1\sigma)$ CUORE-O: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) \ge 9.4 \times 10^{24} \text{ y} (1\sigma; 2 \text{ years})$ CUORE: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) \ge 1.6 \times 10^{26} \text{ y} (1\sigma; 5 \text{ years})$

Experimental reach

► Cuoricino did not see evidence of $0v\beta\beta$ decay in TeO₂

The CUORE-0 detector is ready to begin taking data as soon as its cryostat is repaired (this week?)

Preparations for CUORE are ongoing and will continue for ~ 2 more years, with data taking in 2014(?)

CUORE Collaboration

UCLA

SOUTH CAROLINA

MADISON

Experimental approaches

Calorimeter for events of $E=Q_{\beta\beta}$

Good energy resolution

High efficiency

Large source mass

Constraints on possible sources

No particle identification

Track particles of $\Sigma E = Q_{\beta\beta}$

Poor energy resolution

Low efficiency

Small source mass

Study different sources

Particle identification

Cryogenic bolometers

Cuoricino coincidence veto

Excluding multi-site events reduces background by 15% in region of interest while retaining > 99% of signal

Cuoricino results (2010)

Background: 0.169 ± 0.006 counts/keV/kg/y (130 Te)Lower limit, half-life: $T_{1/2}^{0\nu\beta\beta}(^{130}$ Te) $\geq 2.8 \times 10^{24}$ y (90% C.L.)Upper limit, Majorana v mass: $\langle m_{\beta\beta} \rangle < 300 - 710$ meV

 $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) > 3.0 \times 10^{24} \text{ y} (90\% \text{ C.L.})$

C. Arnaboldi et al. (CUORICINO Collaboration), Phys. Rev. C78, 035502 (2008) [arXiv:nucl-ex/0802.3439].

E. Andreotti et al. (CUORICINO Collaboration), Astropart. Phys. 34: 822-831 (2011) [arXiv:nucl-ex/1012.3266].

Cuoricino + TTT results (US analysis)

Background: ~ 0.16 counts/keV/kg/y Lower limit, half-life: $T_{1/2}^{0\nu\beta\beta}$ (¹³⁰Te) > 3.0 × 10²⁴ y (90% C.L.)

Roman lead shield

- Ancient Roman lead bricks for low-activity shielding
- Recovered in late '80s from shipwreck off Sardinian coast
- Obtained through agreement between INFN and Italian historical society
- 270 bricks, 33 kg each = 7 tons (after inscriptions removed)

CUORE cryostat

Calibration system

- DCS = Detector Calibration System
 - 12 gamma source strings lowered in between crystal towers through guide tubes – no vertical access
 - strings are Kevlar with crimped ⁵⁶Co and/or ²³²Th source capsules at intervals
 - thermalization requirements
 - integration with other systems

