

Latest results from the XENON Dark Matter Program

Luca Scotto Lavina

on behalf of the XENON Collaboration

24th Rencontres de Blois, May 30th 2012, Blois, France

The XENON program

Science Objective : Explore WIMP Dark Matter with a sensitivity to Spin Independent cross section $< 2 \cdot 10^{-47}$ cm² by 2017

Strategy : Phased program with detectors of increasing target mass (from O(10), to O(100), to O(1000) kg) and parallel studies on increasing light detection sensitivity and decreasing the overall background

Detection technique : LXe (sensitive to both scalar and axial coupling) two-phase LXe TPC with simultaneous charge and light detection via PMTs with low radioactivity and QE > 30% at 178 nm

Background Reduction and Signal Discrimination : LXe selfshielding; fiducial volume selection thanks to 3D reconstruction; ER/NR distinguished via charge/light ratio; multi-scatter rejection

Advantages of two-phase xenon TPC principle

24th Rencontres de Blois, May 30th 2012, Blois, France

The XENON program roadmap: growing in target size...

 $\begin{array}{l} \textbf{XENON10} \\ \textbf{Achieved (2007)} \\ \sigma_{_{SI}} = 8.8 \cdot 10^{-44} \ \text{cm}^2 \end{array}$

XENON100 Achieved (2011) $σ_{sl} = 7.0 \cdot 10^{-45} \text{ cm}^2$

Still operating since 2009 !

Projected (2012) $\sigma_{_{SI}} \sim 2 \cdot 10^{_{-45}} \ cm^2$ $\frac{\text{XENON1T}}{\text{Projected (2017)}}$ $\sigma_{\text{SI}} = ~ 10^{-47} \text{ cm}^2$

In advanced design phase Construction in the end of 2012

... and people

24th Rencontres de Blois, May 30th 2012, Blois, France

The Status of Dark Matter Direct Detection

24th Rencontres de Blois, May 30th 2012, Blois, France

New XENON100 Spin Dependent Limit (preliminary)

Analysis for SD coupling of WIMPs to ^{129}Xe (26.2%) and ^{131}Xe (21.8%) (unpaired n)

- Paper in internal referee phase
- Same data (from 2010 data taking) and event selection as for SI analysis
- Profile Likelihood analysis used: Phys. Rev. D 84, 052003 (2011)
- Result by using 2 nuclear models:
 - Suhonen et al. (——)
 - Ressell&Dean (-----)
- New best limits for pure neutron coupling (relatively small impact of nuclear model)
- Pure proton coupling (strong dependence on nuclear model used)

- Data taking for Dark Matter search is terminated!
 From March 1st 2011 up to now. More than one year of continuous operation
- More than 220 live days of data collected
- Excellent Detector Performance and Stability
- Kr in Xe reduced by a factor 20 by cryogenic distillation
- Increased Gamma calibration statistics
- Increased Neutron calibration statistics (two exposure campaigns: at beginning and at about the end of the run)
- Lowered S2 trigger threshold
- Blind analysis in advanced state

Improved trigger efficiency

- 100% efficiency above S2 = 150 photoelectrons
- ability to trigger on very low energy events (~10 electrons!)

Entries

 10^{3}

10²

10

-1 0 2 3

1

5

6 Gain $[\times 10^6]$

4

Calibrations

PMT gain calibration

- Equalized to a mean gain of $\sim 2.6 \times 10^6$ by adjusting the PMT HV
- Determined by stimulating single PE emission by using a blue LED ($\lambda = 470$ nm, $\nu = 100$ Hz)
- Optical fibers used to transport the light in the TPC
- A calibration of all 242 PMTs every week
- Average gain stable during physics run stable within 2%

Gamma calibrations for the yield of primary light

24th Rencontres de Blois, May 30th 2012, Blois, France

Scintillation efficiency for Nuclear Recoils

• Energy scale is set by using scintillation signal (S1): $E_{\rm nr} = \frac{S1}{L_{y,{\rm er}}} \frac{1}{\mathcal{L}_{\rm eff}(E_{\rm nr})} \frac{S_{\rm er}}{S_{\rm nr}}$

- L_{y,er} is the light yield for electron recoils of 122 keV_{ee}
- S_{nr} and S_{er} are the quenching factors due to drift field
- L_{eff} is the relative scintillation efficiency and it is given by:

$$\mathcal{L}_{\rm eff}(E_{\rm nr}) = \frac{L_{y,\rm er}(E_{\rm nr})}{L_{y,\rm er}(E_{\rm ee} = 122 \text{ keV})}$$

Plante et al., Phys. Rev. C 84, 045805, 2011

Data reconstruction and corrections

3D position reconstruction

- X,Y from the light on the Top PMTs
- Z from the measured drift time (dt = $t_{s2} t_{s1}$, $v_{drift} \sim 1.74$ mm/µs @ 533 V/cm)
- Three different algorithms studied: Neural Network (used), Support Vector Machine, χ^2
- Achieved resolution: δr < 3 mm, δZ < 300 μm

3D corrections

- S1 Response
 - Light collection efficiency map (x,y,,z)
 - LY @ 122 keVee

E. Aprile et al. (XENON100), Astropart. Phys. 35:573-590,2012

- S2 Response
 - Electron attachment by impurities in LXe (z)
 - Variation of the S2 light collection efficiency (x,y)
- Corrections obtained with ¹³⁷Cs and AmBe (40 keV inelastic)
 ^{131m}Xe (164 keV) with an agreement better than 3%.

Electron Lifetime during 2011-2012 Dark Matter search

24th Rencontres de Blois, May 30th 2012, Blois, France

Electronic – Nuclear recoil discrimination

Electronic recoil band

• Electronic recoil with ⁶⁰Co and ²³²Th

Data collected all the time for a total of 40 effective days.

Neutron recoil band

• Nuclear recoils with ²⁴¹AmBe

Two exposure campaigns: one at beginning and one at the end of run

E. Aprile et al., Phys. Rev. Lett 105, 131302 (2010)

Significantly reduced background

- Kr85 is an internal background, cannot be removed by self-shielding
- Long-lived β^{-} emitter (99.6%), $E_{max} = 687 \text{ keV } \beta^{-}$ decays indistinguishable from gamma background
- Sensitivity of published data (PRL107, 2011) limited by high Kr/Xe level from accidental leak
- In Fall 2010, Kr removed by distillation of the Xe with on-site distillation column
- Kr/Xe reduced significantly! Dedicated measurement
- with RGMS gives for current search a Kr/Xe level of (19±1) ppt
- Similar value from delayed coincidence analysis

- In WIMP search region background is around 5 x 10⁻⁵ evts/kg/keV/day after S2/S1 discrimination
- Factor 100 less than XENON10 and than other DM experiments (see PRD 83, 2011)

Significantly reduced background

30 kg Fiducial – 198 days

30 kg Fiducial – 100.7 days

Aprile et al., Phys. Rev. Lett. 107, 131302, 2011

Background now comparable with that of first XENON100 result *E. Aprile et al., Phys. Rev. Lett.* **105**, 131302, 2010

24th Rencontres de Blois, May 30th 2012, Blois, France

XENON projected sensitivity

24th Rencontres de Blois, May 30th 2012, Blois, France

The near future: XENON1T

1 m drift TPC with 2.4 ton (1 ton fiducial) LXe
10 m water shield as Cerenkov Muon Veto
100 x less background than XENON100
Approved by INEN for installation at LNCS

- Approved by INFN for installation at LNGS
- Majority of funding secured
- Construction start in LNGS Hall B in 2012
- Science Data projected to start in 2015
- Sensitivity: 2 x 10⁻⁴⁷ cm² after 2 years of data

Big detectors require new solutions...

XENON1T must handle 2.4 tons of liquid xenon and detect electrons after long drift lengths (impurities <100 ppt O₂ eq.)

- XENON1T must be filled with an already purified and liquefied xenon

- We need a fast procedure to fill and recover it

- Krypton and Radon contamination during xenon operations must be minimized

Solution: a new concept of storage and recovery system

WP8 : The XENON1T storage and recovery system

The **Re**covering and **Sto**rage system of **X**ENON1T: **ReStoX**

ReStoX: Xenon recovery in several hours

Requirements:

- The recuperation procedure must be fast (emergency)
- Safe and reliable even in case of cryogenics losses
- Use pressure difference to transfer LXe
- Low radon/krypton contamination

R&D to validate the ReStoX concept done in Subatech

Cryogenics R&D is very promising

Presented by Wan-Ting Chen (Subatech) at

24th International Cryogenic Engineering Conference - International Cryogenic Materials Conference 2012 (ICEC24-ICMC2012)

Cooling power used to maintain the pressure of cryostat

99% @ 33NL/min is achieved!

- XENON100 data taking for Dark Matter search is terminated! From March 1st 2011 up to now. More than one year of continuous operation
- More than 220 live days of data collected, more than a factor 2 with respect to the previous run
- Many news in the latest year: excellent Detector Performance and Stability, Kr in Xe reduced by a factor 20 by cryogenic distillation, increased Gamma and Neutron calibration statistics, lowered S2 trigger threshold
- Blind analysis in very advanced state (stay tuned!)

- Collaboration is already working on next generation: **XENON1T**
- Many news in the latest year: advanced design study, approved by INFN for construction at LNGS in Hall B, approved by US funding agencies (NFS), construction on Fall 2012

Backup...

ReStoX: Capability to fill xenon in few days

Requirements:

- Safe and reliable even in case of cryogenics losses
- Use pressure difference to transfer LXe
- Low radon/krypton contamination

26