Dark Matter at Colliders

Marco Farina

Scuola Normale Superiore & CERN

May 30 2012

1 of 12

Why WIMPS?

Focusing on WIMPS

- Structures \rightarrow "cold" dark matter
- Wimp Miracle: $M_{DM} \sim 100 GeV$ and a typical weak scale annihilation cross section give naturally the observed Ω_{DM}
- Various detection channels:
 - $\circ~$ Indirect (cosmic rays, ecc...): $E \sim O(10-100)~GeV$,
 - **Direct Detection** (recoil of target nuclei): $E \sim O(1-10) \text{ KeV}$,
 - Production at colliders (e.g. $pp \rightarrow \chi \chi$): $E \sim TeV$,

Present Direct Detection situation

CRESST-II coll. [1109.0702]

• If DM interacts with quarks (or leptons) and gluons both direct searches and collider production are valid

- If DM interacts with quarks (or leptons) and gluons both direct searches and collider production are valid
- How to search for dark matter at colliders? DM(=MET) plus mono-jet or mono-photon

- If DM interacts with quarks (or leptons) and gluons both direct searches and collider production are valid
- How to search for dark matter at colliders? DM(=MET) plus mono-jet or mono-photon
- Minimal amount of assumptions (and knowledge) on the NP sector
- Easy to construct effective operators involving DM+SM

Representative sample of operators:

$$\begin{split} \mathcal{O}_1 &= \frac{m_q}{\Lambda_1^2} (\bar{\chi}\chi) \left(\bar{q}q \right) \quad \mathcal{O}_2 = \frac{1}{\Lambda_2^3} (\bar{\chi}\chi) \left(\frac{\alpha_s}{12\pi} G^{\mu\nu} G_{\mu\nu} \right) \\ \mathcal{O}_3 &= \frac{1}{\Lambda_3^2} (\bar{\chi}\gamma^\mu \chi) \left(\bar{q}\gamma_\mu q \right) \quad \mathcal{O}_4 = \frac{1}{\Lambda_4^2} (\bar{\chi}\gamma^\mu \gamma^5 \chi) (\bar{q}\gamma_\mu \gamma_5 q) \\ \text{E.g. s-channel exchange } \Lambda \sim M / \sqrt{g_q g_\chi} \end{split}$$

5 of 12

Representative sample of operators:

$$\mathcal{O}_1 = \frac{m_q}{\Lambda_1^2} (\bar{\chi}\chi) (\bar{q}q) \quad \mathcal{O}_2 = \frac{1}{\Lambda_2^3} (\bar{\chi}\chi) (\frac{\alpha_s}{12\pi} G^{\mu\nu} G_{\mu\nu})$$
$$\mathcal{O}_3 = \frac{1}{\Lambda_3^2} (\bar{\chi}\gamma^\mu \chi) (\bar{q}\gamma_\mu q) \quad \mathcal{O}_4 = \frac{1}{\Lambda_4^2} (\bar{\chi}\gamma^\mu \gamma^5 \chi) (\bar{q}\gamma_\mu \gamma_5 q)$$

E.g. s-channel exchange $\Lambda \sim M/\sqrt{g_q\,g_\chi}$

	ATLAS LowPT	ATLAS HighPT	ATLAS veryHighPT
	1.0 fb ⁻¹	1.0 fb ⁻¹	1.0 fb ⁻¹
Expected	15100 ± 700	1010 ± 75	193 ± 25
Observed	15740	965	167

ATLAS coll. [ATLAS-CONF-2011-096] 5 of 12

Fox et al. [1109.4398]

Representative sample of operators:

$$\mathcal{O}_{1} = \frac{m_{q}}{\Lambda_{1}^{2}} (\bar{\chi}\chi) (\bar{q}q) \quad \mathcal{O}_{2} = \frac{1}{\Lambda_{2}^{3}} (\bar{\chi}\chi) (\frac{\alpha_{s}}{12\pi} G^{\mu\nu} G_{\mu\nu})$$
$$\mathcal{O}_{3} = \frac{1}{\Lambda_{3}^{2}} (\bar{\chi}\gamma^{\mu}\chi) (\bar{q}\gamma_{\mu}q) \quad \mathcal{O}_{4} = \frac{1}{\Lambda_{4}^{2}} (\bar{\chi}\gamma^{\mu}\gamma^{5}\chi) (\bar{q}\gamma_{\mu}\gamma_{5}q)$$
E.g. s-channel exchange $\Lambda \sim M/\sqrt{g_{q}g_{\chi}}$

ATLAS 7 TeV, 1 fb-1

Fox et al. [1109.4398]

Recent results (CMS)

 Number of operators (independence between each other and possible cancellations)

 Number of operators (independence between each other and possible cancellations)

Name	Operator	Coefficient	Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	M3	$\bar{\chi}\chi\bar{q}\gamma^5q$	$im_q/2M_*^3$
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	M4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	$m_q/2M_*^3$
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	M5	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/2M_{*}^{2}$
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3	M6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/2M_*^2$
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$	M7	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/8M_*^3$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	M8	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/8M_*^3$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	M9	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^3$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	M10	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/8M_*^3$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$	C1	$\chi^{\dagger}\chi\bar{q}q$	m_q/M_*^2
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\mu\nu}q$	i/M_*^2	C2	$\chi^\dagger \chi \bar{q} \gamma^5 q$	im_q/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	C3	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$	C4	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu \gamma^5 q$	$1/M_*^2$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$	C5	$\chi^\dagger \chi G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/4M_*^2$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	C6	$\chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
D15	$\bar{\chi}\sigma^{\mu\nu}\chi F_{\mu\nu}$	M	R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
D16	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi F_{\mu\nu}$	D	R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
M1	$\bar{\chi}\chi\bar{q}q$	$m_q/2M_*^3$	R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
M2	$\bar{\chi}\gamma^5\chi\bar{q}q$	$im_q/2M_*^3$	$\mathbf{R4}$	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

- Number of operators (independence between each other and possible cancellations)
- Perturbativity ($\Lambda \gtrsim 2\pi m_{\chi}$), light mediators, ecc...

Name	Operator	Coefficient	Name	Operator	Coefficier
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	M3	$\bar{\chi}\chi\bar{q}\gamma^5q$	$im_q/2M_q$
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	M4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	$m_{q}/2M_{*}^{3}$
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	M5	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/2M_*^2$
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3	M6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/2M_*^2$
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$	M7	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/8M_*^3$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	M8	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/8M_*^3$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$	M9	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^3$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	M10	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/8M_*^3$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$	C1	$\chi^{\dagger}\chi \bar{q}q$	m_q/M_*^2
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\mu\nu}q$	i/M_*^2	C2	$\chi^{\dagger}\chi \bar{q}\gamma^5 q$	im_q/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_*^2$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$	C4	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu \gamma^5 q$	$1/M_*^2$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$	C5	$\chi^\dagger \chi G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/4M_*^2$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	C6	$\chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
D15	$\bar{\chi}\sigma^{\mu\nu}\chi F_{\mu\nu}$	M	R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
D16	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi F_{\mu\nu}$	D	R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
M1	$\bar{\chi}\chi\bar{q}q$	$m_q/2M_*^3$	$\mathbf{R3}$	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
M2	$\bar{\chi}\gamma^5\chi\bar{q}q$	$im_q/2M_*^3$	$\mathbf{R4}$	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

- Number of operators (independence between each other and possible cancellations)
- Perturbativity ($\Lambda \gtrsim 2\pi m_{\chi}$), light mediators, ecc...
- QCD and background uncertainties

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\mu\nu}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$
D15	$\bar{\chi}\sigma^{\mu\nu}\chi F_{\mu\nu}$	M
D16	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi F_{\mu\nu}$	D
M1	$\bar{\chi}\chi\bar{q}q$	$m_q/2M_*^3$
M2	$\bar{\chi}\gamma^5\chi\bar{q}q$	$im_q/2M_*^3$

- Number of operators (independence between each other and possible cancellations)
- Perturbativity ($\Lambda \gtrsim 2\pi m_{\chi}$), light mediators, ecc...
- QCD and background uncertainties
- Translation and comparison on the Direct Detection plane (reintroduces atomic and astro uncertainties)

Name	Operator	Coefficient
01	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\mu\nu}q$	i/M_*^2
11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$
15	$\bar{\chi}\sigma^{\mu\nu}\chi F_{\mu\nu}$	M
16	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi F_{\mu\nu}$	D
ſ1	$\bar{\chi}\chi\bar{q}q$	$m_q/2M_*^3$
12	$\bar{\chi}\gamma^5\chi\bar{q}q$	$im_q/2M_*^3$

Three good examples I: isospin violating couplings

- DAMA and CoGeNT can be accomodate by different couplings to u and d quarks
- It is required $f_p/f_n = -1.54$

MF et al. [1107.0715]

Three good examples I: isospin violating couplings

- DAMA and CoGeNT can be accomodate by different couplings to u and d quarks
- It is required $f_p/f_n = -1.54$

Rajaraman et al. [1108.1196]

Three good examples II: spin dependent scattering

Collider bounds do not suffer from spin-spin suppression

Three good examples III: LEP(tons)

- Yet another way to alleviate the tension between experiments
- Coupling to leptons only e.g.

 $\mathcal{O}_l = \frac{1}{\Lambda^2} (\bar{\chi} \chi) \left(\bar{l} l \right)$

• LEP searches for $\gamma + MET$

Fox et al. [1103.0204]

Three good examples III: LEP(tons)

- Yet another way to alleviate the tension between experiments
- Coupling to leptons only e.g.

 $\mathcal{O}_l = \frac{1}{\Lambda^2} (\bar{\chi}\chi) \left(\bar{l}l \right)$

• LEP searches for $\gamma + MET$

FERMI and Colliders?

Comparison is possible also with Indirect Detection experiments. For example FERMI data ($\chi\chi \rightarrow \gamma\gamma$, $\chi\chi \rightarrow \gamma Z$)

FERMI and Colliders?

Comparison is possible also with Indirect Detection experiments. For example FERMI data ($\chi\chi \rightarrow \gamma\gamma$, $\chi\chi \rightarrow \gamma Z$)

Conclusions

- Comparison of different types of experiments is possible with a minimal set of assumptions
- Effective Operators are powerful (if handled with care)
- Is it all in the hands of experimental collaborations? No! We just have to scratch our heads more (new signals, new channels, old colliders)

Conclusions

- Comparison of different types of experiments is possible with a minimal set of assumptions
- Effective Operators are powerful (if handled with care)
- Is it all in the hands of experimental collaborations? No! We just have to scratch our heads more (new signals, new channels, old colliders)
- Questions? Ask Tim on Friday