# Infra-red modifications of gravity

### Oriol Pujolàs

IFAE & Universitat Autonoma de Barcelona

Rencontres de Blois

June 30 2012

3 problems in late-time cosmology

1) Accelerated Expansion of the Universe

'Simplest' explanation: "dead CC". Fne-tuning 1 in 10<sup>120</sup>

#### Options:

A) justify the fine-tuning (Landscape of vacua + anthropics)

B-1) Modify Matter (Weinberg no-go thm)

B-1.5) something in between

B-2) Modify Gravity (degravitation & mass)

C) (other)

2) The phantom menace

$$w = -0.91^{+0.16}_{-0.20}(\mathrm{stat})^{+0.07}_{-0.14}(\mathrm{sys})$$
 Conley et al 2011

$$w = -1.016^{+0.077}_{-0.079}$$
 Sullivan et al 2011

'Phantom' region w < -1 observationally not excluded can we consistently model phantom behaviour?

--> stable violation of Null Energy Condition (NEC)

#### 3) Possible Anomalies in Structure Formation

(Afshordi Geshnizjani Khoury '09)

- ISW Galaxy surveys-CMB cross-correlation higher than  $\Lambda$ CDM by  $2\sigma$
- Large bulk flows on large scales (>50 Mpc)
- Excess of power in Lyman- $\alpha$  forest
- (CBI excess, lack of large-angle correlation in CMB)

Is ΛCDM enough??

Does LSS suggest that gravity is stronger at large scales??

### Plan

- Massive gravity
- The Galileon
- High-Derivative interactions & Imperfect DE

What can we expect from Massive Gravity? (assuming it exists)

$$\Box \phi + m^2 \phi = J$$

1) Screening of the CC

$$J = const;$$
  $\phi = J/m^2$ 

2) Source-free 'condensates'

$$J = 0;$$
  $\phi = \cos(mt)$ 

=> Scale of condensate = mass (~  $H_0$ ) is Radiatively Stable

3) Additional degrees of freedom:

(Vainshtein mechanism)

( Degravitation )

(Self-Acceleration)

What can we expect from Massive Gravity? (assuming it exists)



??

$$\Box \phi + m^2 \phi = J$$

1) Screening of the CC

$$J = const;$$
  $\phi = J/m^2$ 

( Degravitation )

(Self-Acceleration) ??

2) Source-free 'condensates'

$$J=0;$$
  $\phi=\cos(mt)$ 

=> Scale of condensate = mass (~  $H_0$ ) is Radiatively Stable

3) Additional degrees of freedom:

(Vainshtein mechanism)



Linearized Massive gravity: 2 tensor + 2 vector + 1 scalar

only allowed mass term 
$$m^2 h^{\mu\nu} (h_{\mu\nu} - h \, \eta_{\mu\nu})$$
 Pauli-Fierz '39

$$h_{\mu\nu} = \partial_{\mu}\partial_{\nu}\phi \longrightarrow -m^{2}\phi \ \partial^{\nu}\partial^{\mu} \Big(\partial_{\mu}\partial_{\nu} - \Box \ \eta_{\mu\nu}\Big)\phi$$
(Stückelberg trick)

higher-derivative terms cancel

Linearized Massive gravity: 2 tensor + 2 vector + 1 scalar

only allowed mass term 
$$m^2 h^{\mu\nu} (h_{\mu\nu} - h \, \eta_{\mu\nu})$$
 Pauli-Fierz '39 
$$h_{\mu\nu} = \partial_{\mu} \partial_{\nu} \phi \longrightarrow -m^2 \phi \; \partial^{\nu} \partial^{\mu} \left( \partial_{\mu} \partial_{\nu} - \Box \, \eta_{\mu\nu} \right) \phi \quad \text{higher-derivative terms cancel}$$
 (Stückelberg trick)

How about Non-Linear completions of Massive Gravity?

"Boulware-Deser ghost" ('72) 
$$(h_{\mu\nu})^N \Rightarrow (\partial_\mu \partial_\nu \phi)^N$$

Recently, a ghost free nonlinear completion was explicitly constructed. (3 parameters.)

Gabadadze, de Rham and Tolley 09

The mplications of the model are currently under scrutiny.

Cosmology: subtle



Degravitation: No



Self-accleleration: Yes





Insight: nonlinear completion of massive gravity relates to scalar High-Derivative self-interactions

Nicolis Rattazzi Trincherini '08

- -> can one have interactions involving  $\partial_{\mu}\partial_{\nu}\phi$  ?
- -> can one have interactions involving only  $\partial_{\mu}\partial_{\nu}\phi$  ??

Insight: nonlinear completion of massive gravity relates to scalar High-Derivative self-interactions

Nicolis Rattazzi Trincherini '08

- -> can one have interactions involving  $\partial_{\mu}\partial_{\nu}\phi$  ?
- -> can one have interactions involving only  $\partial_{\mu}\partial_{\nu}\phi$  ??

**YES!** 
$$DGP$$
:  $\Box \phi + (\Box \phi)^2 - (\partial \partial \phi)^2 = 0$ 

Finite number of 2-derivative terms with Galilean symmetry  $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + c_{\mu}$ 

5 Galilean-invariant terms, 
$$(\partial^{2N-2}\phi^N, N=1,2,...,D+1)$$

$$\phi \qquad (\partial \phi)^2 \qquad \Box \phi (\partial \phi)^2 \qquad \partial^6 \phi^4 \qquad \partial^8 \phi^5$$

#### Virtues of the Galileon

non-renormalization theorem
 Luty Porrati Rattazzi '03
 (they are Wess-Zumino terms of broken spacetime symmetries )

Goon Hinterbichler Joyce Trodden '11

- Vainshtein effect under control
- no ghosts
- stable violation of NEC

Galileon as an IR modification of gravity  $L = (\partial \phi)^2 + \frac{\Box \phi (\partial \phi)^2}{\Lambda^3}$ 

$$L = (\partial \phi)^2 + \frac{\Box \phi (\partial \phi)^2}{\Lambda^3}$$

 $\Lambda \simeq (1000 \, Km)^{-1} \ll M_P$ 

- Decoupling regime



=> coupling to matter suppressed (Vainshtein mechanism)

Galileon as an IR modification of gravity

$$L = (\partial \phi)^2 + \frac{\Box \phi (\partial \phi)^2}{\Lambda^3}$$

 $\Lambda \simeq (1000 \, Km)^{-1} \ll M_P$ 

- Decoupling regime



- Self-acceleration:  $\phi = x^{\mu}x_{\mu}$  mimics a de Sitter metric  $h_{\mu\nu} + \phi \eta_{\mu\nu}$ 



- -> can one have interactions involving  $\partial_{\mu}\partial_{\nu}\phi$  ?
- -> can one have interactions involving only  $\partial_{\mu}\partial_{\nu}\phi$  ??

-> can one have interactions involving  $\partial_{\mu}\partial_{\nu}\phi$  ?

-> can one have interactions involving  $\partial_{\mu}\partial_{\nu}\phi$  ?

Most general theory propagating a single scalar is parametrized by 4 functions

Horndesky '74,  $L=K(\phi,X)+G(\phi,X)\Box\phi+...$  Deffayet Gao Steer Zahariade '11  $X\equiv\partial_{\mu}\phi\;\partial^{\mu}\!\phi$ 

- Relax Galilean invariance
- Still, no ghosts
- Include gravity => DE-type model (or something in between)

Simplest HD model Kinetic Gravity Baiding

Deffayet, O.P. Sawicki Vikman '10

$$L = K(\phi, X) + G(\phi, X) \Box \phi$$

#### Generic features

--> Braiding 
$$G(\phi, X) \left[ \partial \partial \phi + \partial g \partial \phi \right]$$

Essential nonlinear mixing Modification of gravity?

--> Imperfect fluid => imperfect DE generalization of `k-essence'



## Kinetic Gravity Braiding

Concentrate on shift-symmetric case: K(X), G(X)

is a Goldstone boson

Chance not to worsen fine-tuning problems!

## Kinetic Gravity Braiding

Concentrate on shift-symmetric case: K(X), G(X)

is a Goldstone boson

$$A^{\mu\nu} \nabla_{\!\!\mu} \nabla_{\!\!\nu} \phi + (g^{\alpha\beta} H^{\mu\nu} - g^{\alpha\mu} H^{\beta\nu}) \nabla_{\!\!\alpha} \nabla_{\!\!\beta} \phi \nabla_{\!\!\mu} \nabla_{\!\!\nu} \phi - G' \nabla_{\!\!\mu} \phi \nabla_{\!\!\nu} \phi R^{\mu\nu} = 0$$

$$\text{"Kinetic Braiding"} \nabla \phi \left[ \nabla, \nabla \right] \nabla \phi$$

=> sourced by matter even if no microscopic coupling in the Lagrangian

Background cosmology (flat, homogeneous, FRW)

- Scalar Eom: 
$$\left\{ \begin{array}{l} \nabla^{\mu} J_{\mu} = 0 \\ J_{\mu} = n \ u_{\mu} \end{array} \right\} \Longrightarrow n \equiv \dot{\phi} \left( K' + 3H \ \dot{\phi} \ G' \right) = \frac{n_0}{a^3(t)}$$









Off-attractor:

**Tracks matter** 

$$\dot{\phi}_* = \dot{\phi}_*(\rho(t))$$

normal (dilutes)

$$W_n(W_{Matter}) > 0$$

phantom behaviour  $w_* < -1$  (in the stable case)

asymptotes de Sitter

$$(w_* \rightarrow -1 \text{ from below})$$

#### On the attractor

$$K(X) = -X$$

$$G(X) = \frac{X}{\Lambda^3}$$

$$\Lambda \sim (1000 Km)^{-1}$$



Off-attractor

Early Dark Energy

at most ~10%

- @ equality
- => *n* not too large



#### Conclusions

- Large class of new models has been 'discovered'
- Working model of massive gravity => ??
- Working model of phantom DE
  - -> Generically, Early Dark Energy also
- Models with additional d.o.f. (active at large scales) Generically, stronger Structure formation.

#### Main open issues:

- Can we degravitate away the CC?
- Typically low strong coupling scale, radiative stability, UV completions, Lorentz Violation, BHs with violation of NEC, ...

