Asymmetric WIMP dark matter and DM/antiDIN oscillations

G. Zaharijas
(CEA, Saclay and ICTP, Trieste)

w M. Cirelli, P. Panci, G. Servant.

24th Recontre de Blois, 2012.

Cosmic Pie

The energy content of the Universe:
$\Omega_{\text {DM }} \sim 22 \%$ (CMB, rotational curves, X rays from clusters...)
$\Omega_{\mathrm{b} \sim} 4 \%$ (CMB, BBN, ...)
$\Omega_{\Lambda \sim 74 \%}$ (CMB+SNIa observations)

1) Most of the Universe is unknown/Dark.
2) $\Omega_{\mathrm{DM},} \Omega_{\mathrm{b}}\left(\right.$ and $\left.\Omega_{\Lambda}\right)$ are of a comparable magnitude.

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;
- as the Universe expands
\rightarrow DM interaction rates drops below the expansion rate of the Universe,
\rightarrow DM decouples setting $\Omega_{D M}$.

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;
- as the Universe expands
\rightarrow DM interaction rates drops below the expansion rate of the Universe,
\rightarrow DM decouples setting $\Omega_{D M}$.
- $\Omega_{D M}$ depends mainly on $\langle\sigma \mathrm{v}\rangle$!

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;
- as the Universe expands
\rightarrow DM interaction rates drops below the expansion rate of the Universe,
\rightarrow DM decouples setting $\Omega_{D M}$.
- $\Omega_{D M}$ depends mainly on $\langle\sigma \mathrm{v}\rangle$! (weak cross section \rightarrow WIMP miracle)

$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;
- as the Universe expands
\rightarrow DM interaction rates drops below the expansion rate of the Universe,
\rightarrow DM decouples setting $\Omega_{D M}$.
- $\Omega_{D M}$ depends mainly on $\langle\sigma \mathrm{v}\rangle$!

What determines Ω_{DM} and Ω_{b} ?

$\Omega_{D M} \leftrightarrow$ thermal decoupling (WIMPs):

- initially DM is in equilibrium with thermal plasma;
- as the Universe expands
\rightarrow DM interaction rates drops below the expansion rate of the Universe,
\rightarrow DM decouples setting $\Omega_{D M}$.
- $\Omega_{D M}$ depends mainly on $\langle\sigma \mathrm{v}\rangle$!

$\Omega_{b} \leftrightarrow$ primordial asymmetry;
baryons freeze-out due to a lack of anti-baryons! (otherwise, due to the high cross section they would annihilate away).

Motivation for Asymmetric DM models

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{DM}} \leftrightarrow \\
& \mathrm{n}_{\mathrm{b}} \text { relic freeze-out } \\
& \text { baryogenesis } \\
& \text { (lack of anti-baryons) }
\end{aligned}
$$

Two sectors, with mutually weak interactions and different time evolution, ...

$$
\frac{\Omega_{D M}}{\Omega_{b}} \sim 5.86
$$

Just a coincidence? Or signal of a link?

General idea of ADM:

DM carries a charge and is 'asymmetric' (like the visible sector)

+ there is a connection between $\Delta \mathrm{B}(\mathrm{X})$ and $\Delta \mathrm{B}(\mathrm{B}, \mathrm{L})$ causing $n_{D M} \sim n_{b}$.

ADM models generally involve the co-generation of an asymmetry in both dark matter and baryonic sectors or a transfer of asymmetries between the two through higher-dimensional operators.

General features of ADM:

1) ADM is naturally light.

$$
\begin{aligned}
& a\left(n_{D M}-n_{\overline{D M}}\right)=\left(n_{B}-n_{\bar{B}}\right) \\
& \left(\frac{\Omega_{D M}}{\Omega_{B}}=\frac{n_{D M}}{n_{B}} \frac{m_{D M}}{m_{B}}\right.
\end{aligned}
$$

$$
\rightarrow m_{D M} \sim 5 a G e V!
$$

2) ADM does not self-annihilate: No standard indirect detection signatures.
$\sqrt{ }$ DIRECT
DETECTION

Particle physics framework(s) a brief overview of ideas

~ 100 papers on the ADM idea have been published since the 80 ties.

1) Co-generation of asymmetry in dark and our sectors:

- Embed in EW baryogenesis via sphalerons/DM charged under the SU(2) (Nussinov, 1985, Barr, Chivukula\&Farhi, 1990, Kaplan, 1992...).
- Generalized GUT-baryogenesis or leptogenesis: (Davoudiasl et. al, 1008.2399, Blennow et al., 1009.3159, Falkowski et. al, 1101.4936, ...) CP-violating decays of heavy states lead to a lepton number asymmetry in both the SM and hidden sectors.

(Falkowski et. al, 1101.4936: 'Two sector leptogenesis')
- leptogenesis triggered by WIMP freeze-out (Cui, Randall, Shuve, 1112.2704; Chowdhury et al., 1110.5334).

Particle physics framework(s) a brief overview of ideas

~ 100 papers on the ADM idea have been published since the 80 ties.
2) Asymmetry transfer: asymmetry generated in one sector and transferred to the other one:

- through (temperature dependent) mass mixing between X and L: (Cui, Randall, Shuve, 1106.4834.)
- through higher-dim operators (Kaplan et. al 0901.4117, Cohen\&Zurek,0909.2035)

$$
\mathcal{L}_{\text {asym }}=\frac{1}{M_{i j}^{4}} \bar{X}^{2}\left(L_{i} H\right)\left(L_{j} H\right)+\text { h.c. }, \quad \bar{X} \bar{X} \leftrightarrow \bar{\nu} \bar{\nu}
$$

Asymmetry fixed after transfer operators freeze-out (T_{D}).

$$
\frac{n_{X}}{n_{b}} \sim \frac{n_{X}^{e q}\left(T_{D}\right)}{n_{b}^{e q}\left(T_{D}\right)}
$$

DM/anti-DM oscillations?

The ADM story can change significantly in the presence of tiny majorana mass term which gives rise to DM particle-antiparticle oscillations.

Oscillating ADM provides a generalization of typical symmetric and asymmetric DM freeze-out cosmologies. (The asymmetric limit corresponds to oscillations slower than the lifetime of the Universe, while the symmetric limit corresponds to fast oscillations that turn on long before DM freeze-out.)

DM/anti-DM oscillations:
 A different relic decoupling scenario

η_{0-} primordial asymmetry.
$\mathrm{Y}^{+} / \mathrm{Y}^{-}$DM particle/antiparticle.
$\Sigma=\mathrm{Y}^{+}+\mathrm{Y}^{-}$

DM/anti-DM oscillations:
 A different relic decoupling scenario

General features of ADM WIMP decoupling:

1. Asymmetric 'freeze-out'
η_{0-} primordial asymmetry.
$\mathrm{Y}^{+} / \mathrm{Y}^{-} \mathrm{DM}$ particle/antiparticle.
$\Sigma=\mathrm{Y}^{+}+\mathrm{Y}^{-}$

DM/anti-DM oscillations:
 A different relic decoupling scenario

General features of ADM WIMP decoupling:

1. Asymmetric 'freeze-out'
2. Oscillations repopulate Y^{-}
η_{0-} primordial asymmetry.
$\mathrm{Y}^{+} / \mathrm{Y}^{-} \mathrm{DM}$ particle/antiparticle.
$\Sigma=\mathrm{Y}^{+}+\mathrm{Y}^{-}$

DM/anti-DM oscillations:
 A different relic decoupling scenario

General features of ADM WIMP decoupling:

1. Asymmetric 'freeze-out'
2. Oscillations repopulate Y^{-}
3. Annihilations recouple and lower the total DM density.
$\eta_{0 \text { - primordial asymmetry. }}$.
$\mathrm{Y}^{+} / \mathrm{Y}^{-} \mathrm{DM}$ particle/antiparticle.
$\Sigma=\mathrm{Y}^{+}+\mathrm{Y}^{-}$

DM/anti-DM oscillations:
 A different relic decoupling scenario

General features of ADM WIMP decoupling:

1. Asymmetric 'freeze-out'
2. Oscillations repopulate Y^{-}
3. Annihilations recouple and lower the total DM density.
4. Process repeats in a series of plateaux.
η_{0-} primordial asymmetry.
$\mathrm{Y}^{+} / \mathrm{Y}^{-}$DM particle/antiparticle.
$\Sigma=\mathrm{Y}^{+}+\mathrm{Y}^{-}$

DM/anti-DM oscillations:
 A different relic decoupling scenario

η_{0-} primordial asymmetry.
$\mathrm{Y}^{+} / \mathrm{Y}^{-}$DM particle/antiparticle.
$\Sigma=\mathrm{Y}^{\dagger}+\mathrm{Y}^{-}$
$\Omega_{D M} \rightarrow \Omega_{D M}\left(\langle\sigma v\rangle, \eta_{0}, m_{D M}, \delta m\right)$

DM/anti-DM oscillations:
 A different relic decoupling scenario

I. \rightarrow Oscillations fill a gap between the standard freeze out prediction (where Ω_{DM} depends only on the annihilation cross section σ), and the ADM prediction where Ω_{DM} depends only on the primordial DM asymmetry.
2. Higher masses $>\sim 100 \mathrm{GeV}$ are therefore 'naturally' available in this framework
3. Phenomenological bounds modified: DM is symmetric today, so it selfannihilates! Traditional ADM bounds do not apply while standard WIMP bounds become relevant.

DM/anti-DM oscillations: The formalism

We study a system of Y^{+}and Y^{-}, which possess an initial asymmetry $\left(\mathrm{Y}^{+}>\mathrm{Y}^{-}\right)$and is subject to simultaneous:
i) oscillations $\mathrm{Y}^{+,-} \leftrightarrow \mathrm{Y}^{-}$
ii) annihilations $\mathrm{Y}^{+} \mathrm{Y}^{-} \leftrightarrow$ SMSM and
iii) elastic scatterings $\mathrm{Y}^{+,-} \mathrm{SM} \leftrightarrow \mathrm{Y}^{+,-}$SM.

It is an interplay between a coherent process such as oscillations with incoherent processes such as annihilations and scatterings.
'Density matrix formalism' (originally developed for v oscillations in the Early Universe) provides a framework to account for quantum coherence between particle and antiparticle states (Dolgov, 1981; Sigl\&Raffelt, 1993; Dolgov et al., hep-ph/0202122v2, ...)

DM/anti-DM oscillations: The formalism

$$
\mathcal{Y}(x)=\left(\begin{array}{cc}
Y^{+}(x) & Y^{+-}(x) \\
Y^{-+}(x) & Y^{-}(x)
\end{array}\right) \begin{aligned}
& \text { Y: co-moving DM abundance; } \\
& \text { diagonal elements are } \rho \text { physical states. } \\
& \text { off diagonal elements are their superposition. }
\end{aligned}
$$

$$
\begin{array}{r}
\mathcal{Y}^{\prime}(x)=-\frac{i}{x H(x)}[\mathcal{H}, \mathcal{Y}(x)] \text { mass hamiltonian acts as source of oscillations } \\
\mathrm{Y}^{+} \leftrightarrow \mathrm{Y}^{-}
\end{array}
$$

$$
-\frac{s(x)}{x H(x)}\left(\frac{1}{2}\left\{\mathcal{Y}(x), \Gamma_{\mathrm{a}} \overline{\mathcal{Y}}(x) \Gamma_{\mathrm{a}}^{\dagger}\right\}-\Gamma_{\mathrm{a}} \Gamma_{\mathrm{a}}^{\dagger} \mathcal{Y}_{\mathrm{eq}}^{2}\right)
$$

annihilations

$$
\mathrm{Y}^{+} \mathrm{Y}^{-} \leftrightarrow \mathrm{SMSM}
$$

$$
-\frac{1}{x H(x)}\left\{\Gamma_{\mathrm{s}}(x), \mathcal{Y}(x)\right\}
$$

elastic scatterings Y SM \leftrightarrow Y SM
$\mathcal{H}=\left(\begin{array}{cc}m & \delta m \\ \delta m & m\end{array}\right) \quad$ and we take $\Gamma_{\mathrm{a}} \sim\left\langle\sigma_{\mathrm{a}} v\right\rangle \mathrm{I}, \Gamma_{\mathrm{s}} \sim \sigma_{\mathrm{s}} \mathrm{I}$.

DM/anti-DM oscillations: Results:

Parameters of the system: $\mathrm{m}_{\mathrm{DM}}, \sigma_{0}, \delta \mathrm{~m}, \eta_{0}, \xi$.
$\delta \mathrm{m}$: oscillation parameter: tiny! typically $10^{-14} \rightarrow 10^{-2} \mathrm{eV}$
If δm too large: oscillations occur too early, system is symmetric.
If δm too small: oscillations occur too late, system is totally asymmetric.
$\eta_{0 \text { : }}$ primordial DM asymmetry: free, but naturally $\sim \eta_{\mathrm{b}}$
ξ : strength of scattering on normal matter wrt naive $\sim \mathrm{G}_{\mathrm{F}}$ expectations. Direct detection experiments impose $\xi<10^{-2}$

DM/anti-DM oscillations:
 Results: σ_{0} vs mDм plane.

w isolines of correct Ω_{DM}, for different values of $\delta \mathrm{m}$ and η_{0}.
ann+osc $\quad \xi=0$

DM/anti-DM oscillations:
 Results: σ_{0} vs mдм plane.

w isolines of correct Ω_{DM}, for different values of $\delta \mathrm{m}$ and η_{0}.

DM/anti-DM oscillations:

Results: Parameter space with phenomenological constraints.

Oscillations symmetrize dark sector \rightarrow constraints on WIMP annihilations apply.

- Energy injected from DM annihilation during recombination (z~1100), results in an increased amount of free electrons, which survive to lower redshifts and affect the CMB anisotropies. [Galli et al., PRD (2011)]
- Present time annihilations (producing gamma rays)

Fermi-LAT observation (non-detection) of dwarf spheroidal Galaxies. [Fermi-LAT collaboration, PRL (2011)]

HESS observation of the Galactic Center halo region. Due to the high energies covered by ACTs these limits are specially relevant for heavy $>\sim 1 \mathrm{TeV}$ DM. [H.E.S.S. Collaboration, arXiv:1103.3266]

DM/anti-DM oscillations:

Results: Parameter space with phenomenological constraints.
Oscillations symmetrize dark sector \rightarrow constraints on WIMP annihilations apply. ann+osc

$$
\text { ann }+ \text { osc+ el scatterings }
$$

DM/anti-DM oscillations:
 Results: $\delta \mathrm{m}$ vs mDM plane.

As oscillations symmetrize dark sector, usual WIMP constraints apply.
$a n n+o s c$

ann + osc+ el scatterings

Note: a natural value in the fermionic case is obtained from the dimension- 5 operator:

$$
\frac{X X H^{\dagger} H}{\Lambda}
$$

$$
\text { taking } \Lambda \sim \mathrm{Mp},<\mathrm{H}>\rightarrow \delta \mathrm{m} \sim 10^{-6} \mathrm{eV} \text {. }
$$

Comparing

Tulin, Yu, Zurek, 1202.0283
$\sqrt{ }$ full formalism from first principles:

- non-equilibrium QFT
$\sqrt{ }$ extends to include
- flavor sensitive interactions
- precise effects of scatterings
- only specific examples Quantitatively:
results unchanged for some particle physics cases
some new cases appear (next page)

FB/FS refers to a transformation property of a L under C.
If DM/fermions coupled through contact interaction: flavor blind (scalar, pseudo scalar, axial vector)/sensitive (vector and tensor).

Summary

- Scenarios with DM anti-DM oscillations preserve the attractive feature of $A D M$, that relates the DM primordial asymmetry and the baryon asymmetry and at the same time preserve also the appeal of weak scale DM mass and cross-sections.
- We suggest a formalism needed to treat the system of particles that oscillate coherently but at the same time suffer coherence-breaking elastic scatterings on the plasma and annihilations among themselves.
- We have applied such formalism to explore the phenomenologically available space, by varying the parameters of $\mathrm{m}_{\mathrm{DM}}, \sigma_{0}, \eta_{0}, \delta \mathrm{~m}$, for two discrete choices of the parameter ξ that sets the strength of the elastic scatterings on the plasma.
- Work on particular particle physics cases in progress.

Extra slides

General features of ADM:

Phenomenological probes/constraints:

Stars can accumulate far more ADM particles than usual WIMPs, which can alter their dynamics.

- ADM captured in neutron stars can become self-gravitating, forming a black hole that will eventually destroy the host stars. Observation of old pulsars in globular clusters then sets the limit on DM capture rate (elastic cross section) competitive w.r.t. direct detection experiments. (McDermott et al., I I 03.5472)

DM/anti-DM oscillations?

A small χ^{+} / χ^{-}mass splitting induces $X^{+} \leftrightarrow \chi^{-}$oscillations.

$$
\begin{gathered}
\left.-\mathcal{L}_{\text {mass }}=\frac{1}{2} \overline{\left(\left(X_{L}\right)^{c}\right.} \quad X_{R}\right) \\
\mathcal{L}_{\text {mass }}=\frac{1}{2}\left(\begin{array}{cc}
\Delta & m \\
m & \Delta
\end{array}\right)\binom{X_{L}}{\left(X_{R}\right)^{c}}+\text { h.c. } \\
\text { fermionic DM } \\
\mathcal{H}=\left(\begin{array}{cc}
m^{2} & \Delta^{2} / 2 \\
\Delta^{2} / 2 & m^{2}
\end{array}\right)\binom{\varphi}{\varphi^{*}} \\
\text { fr } \left.\begin{array}{c}
\delta m \\
\delta m
\end{array}\right) \text { whealar DM }
\end{gathered}
$$

Δ is a term which violates a global $U(I)_{D M}$ and its non-zero value is responsible for the oscillations between Y^{+}and Y-.
Natural to assume:'Majorana' mass $\Delta \ll$ 'Dirac' mass m.

DM/anti-DM oscillations: δm

In our study, δm is a free parameter that can range orders of magnitude. Could the Majorana masses of neutrinos and dark matter have a common origin?
(Cohen\&Zurek, 0909.2035, Falkowski, I IOI.4936),
extra hidden scalar φ links right handed N and DM (leptogenesis framework)

$$
\begin{aligned}
& \mathcal{L} \supset-m_{\chi} \chi \tilde{\chi}+\frac{1}{2} M_{N_{1}} N_{1}^{2}+\lambda N_{1} \chi\langle\phi\rangle+y N_{1} L\langle h\rangle+h . c . \\
& \mathcal{L} \supset-m_{\chi} \chi \tilde{\chi}-\frac{\mu_{\chi}}{2} \chi^{2}-\frac{m_{\nu}}{2} \nu^{2}-\mu_{\chi \nu} \chi \nu+h . c . \\
& \mu_{\chi}=\lambda^{2} \frac{v_{\phi}^{2}}{M_{N_{1}}}, \quad m_{\nu}=y^{2} \frac{v_{\mathrm{EW}}^{2}}{M_{N_{1}}}, \quad \mu_{\chi \nu}=\left(\frac{\lambda}{y} \frac{v_{\phi}}{v_{\mathrm{EW}}}\right) m_{\nu} .
\end{aligned}
$$

if φ acquires a vev, it generates a Majorana mass for DM but also induces a mixing between DM and neutrinos that can lead to DM decay depending on the choice of parameters.

- Note: a natural value in the fermionic case is obtained from the dimension-5 operator:

$$
\frac{X X H^{\dagger} H}{\Lambda} \text { taking } \Lambda \sim \mathrm{Mp},<\mathrm{H}>\rightarrow \delta \mathrm{m} \sim 10^{-6} \mathrm{eV} .
$$

Formalism: Consider only DM annihilations

The density matrix equation reads:

$$
\mathcal{Y}^{\prime}(x)=-\frac{s(x)}{x H(x)}\left(\frac{1}{2}\left\{\mathcal{Y}(x), \Gamma_{\mathrm{a}} \overline{\mathcal{Y}}(x) \Gamma_{\mathrm{a}}^{\dagger}\right\}-\Gamma_{\mathrm{a}} \Gamma_{\mathrm{a}}^{\dagger} \mathcal{Y}_{\mathrm{eq}}^{2}\right) .
$$

$$
\Gamma_{\mathrm{a}} \Gamma_{\mathrm{a}}^{\dagger}=\langle\sigma v\rangle \mathbb{I} \quad \overline{\mathcal{Y}}=\mathrm{CP}^{-1} \cdot \mathcal{Y} \cdot \mathrm{CP}
$$

In this case the matrix form reduces to the usual Boltzmann eqn:

$$
Y^{ \pm \prime}(x)=-\frac{\langle\sigma v\rangle s(x)}{x H(x)}\left[Y^{+}(x) Y^{-}(x)-Y_{\mathrm{eq}}^{2}(x)\right]
$$

Formalism: Consider only DM annihilations

The density matrix equation reduces to:

$$
\mathcal{Y}^{\prime}(x)=-\frac{s(x)}{x H(x)}\left(\frac{1}{2}\left\{\mathcal{Y}(x), \Gamma_{\mathrm{a}} \overline{\mathcal{Y}}(x) \Gamma_{\mathrm{a}}^{\dagger}\right\}-\Gamma_{\mathrm{a}} \Gamma_{\mathrm{a}}^{\dagger} \mathcal{Y}_{\mathrm{eq}}^{2}\right)
$$

Formalism: Consider only oscillations

The density matrix equation reads:

$$
\mathcal{Y}^{\prime}(x)=-\frac{i}{x H(x)}[\mathcal{H}, \mathcal{Y}(x)]
$$

mass hamiltonian acts as source of oscillations

$$
\mathcal{H}=\left(\begin{array}{cc}
m_{\mathrm{DM}} & \delta m \\
\delta m & m_{\mathrm{DM}}
\end{array}\right)
$$

And is equivalent to a simple set of two equations:

$$
\left\{\begin{array}{l}
\Sigma^{\prime}(x)=0 \\
\Delta^{\prime}(x)=-2 \frac{\Gamma_{\mathrm{osc}}(x)}{x H(x)} \Delta(x)
\end{array}\right.
$$

Σ - the total number of particles
Δ - the difference
$\Gamma_{\text {osc }} \rightarrow \delta m \tan (\delta m / H(x))$

Formalism: Consider only oscillations

And is equivalent to a simple set of two equations:

$$
\left\{\begin{array}{l}
\Sigma^{\prime}(x)=0 \\
\Delta^{\prime}(x)=-2 \frac{\Gamma_{\mathrm{osc}}(x)}{x H(x)} \Delta(x)
\end{array}\right.
$$

$\Gamma_{\text {osc }} \rightarrow \delta m \tan (\delta m / H(x))$
oscillation period: $\mathrm{H} \sim 1 / 2 \mathrm{t}$; tosc $\sim 2 \pi / \delta m$.

Solutions are simple oscillations:

- Σ stays constant,
- Δ oscillates,
$\Delta=\Delta_{0} \operatorname{Cos}(\delta m / 2 H(x))$

Formalism: Oscillations + elastic scatterings

Now we can study an effect of decoherence of scattering on DM oscillations

$$
\begin{array}{r}
\mathcal{Y}^{\prime}(x)=-\frac{i}{x H(x)}[\mathcal{H}, \mathcal{Y}(x)]-\frac{1}{H(x)}\left\{\Gamma_{\mathrm{s}}(x), \mathcal{Y}(x)\right\} . \\
\mathcal{H}=\left(\begin{array}{cc}
m_{\mathrm{DM}} & \delta m^{2} \\
\delta m & m_{\mathrm{DM}}
\end{array}\right) . \quad \Gamma_{\mathrm{s}}=\left(\begin{array}{cc}
\gamma_{\mathrm{s}} & 0 \\
0 & \gamma_{\mathrm{s}}
\end{array}\right)
\end{array}
$$

mass hamiltonian acts as source of oscillations
elastic scatterings described by a diagonal matrix.

Formalism: Oscillations + elastic scatterings

Now we can study an effect of decoherence of scattering on DM oscillations

$$
\mathcal{Y}^{\prime}(x)=-\frac{i}{x H(x)}[\mathcal{H}, \mathcal{Y}(x)]-\frac{1}{H(x)}\left\{\Gamma_{\mathrm{s}}(x), \mathcal{Y}(x)\right\} .
$$

numerical solution of DMeq:

Scatterings delay and damp oscillations!
The same holds for annihilations.

$$
\begin{aligned}
\Gamma & =0 \quad \text { oscillations only } \\
\Gamma & =\delta m \\
\Gamma & =5 \delta m
\end{aligned}
$$

Formalism: Oscillations + elastic scatterings

If scattering rates are $\gg \delta \mathrm{m}$, the solution is damped oscillator, with a decay time $\delta m^{2} / \Upsilon!$
$\Gamma_{\text {osc }} \rightarrow 2 \delta m^{2} / \gamma_{\mathrm{s}}$
$\Gamma=0$ oscillations only
$\Gamma=\delta m$
$\Gamma=5 \delta \mathrm{~m}$

Formalism: Full Boltzmann equation

Rephrased in terms of 4 new variables, rather than density matrices.

$$
\left\{\begin{array}{l}
\Sigma^{\prime}(x)=-2 \frac{\langle\sigma v\rangle s(x)}{x H(x)}\left[\frac{1}{4}\left(\Sigma^{2}(x)-\Delta^{2}(x)-\Xi^{2}(x)-\Pi^{2}(x)\right)-Y_{\mathrm{eq}}^{2}(x)\right], \\
\Delta^{\prime}(x)=\frac{2 i \delta m}{x H(x)} \Xi(x), \\
\Xi^{\prime}(x)=\frac{2 i \delta m}{x H(x)} \Delta(x)-\frac{i \Delta V}{x H(x)} \Pi(x)-\frac{\gamma_{\mathrm{s}}}{x H(x)} \Xi(x)-\frac{\langle\sigma v\rangle s(x)}{x H(x)} \Xi(x) \Sigma(x), \\
\Pi^{\prime}(x)=-\frac{i \Delta V}{x H(x)} \Xi(x)-\frac{\gamma_{\mathrm{s}}}{x H(x)} \Pi(x) .
\end{array}\right.
$$

$$
\Pi(x)=Y^{+-}(x)+Y^{-+}(x)
$$

$$
\Xi(x)=Y^{+-}(x)-Y^{-+}(x)
$$

Results: Interplay among parameters: varying δm

To the right: a much smaller δm : the co-moving population of DM therefore sits for a longer time on the plateau determined by the initial asymmetry η_{0}. Higher value of $\sigma_{0}=60 \mathrm{pb}$ is now needed to reach the correct relic abundance.

Results: Interplay among parameters: varying mDM

To the right: a higher, roughly weak-scale value of the DM mass. The correct relic abundance is achieved by starting oscillations earlier (to deplete Y more efficiently!), i.e. by choosing a larger δm.

Results: Interplay among parameters: adding ξ.

To the right: elastic scatterings included ($\xi=10^{-2}$) - the effect of incoherent scatterings that delay and damp the oscillations. A larger cross section is needed to keep the annihilations active at late times and thus reach the right abundance.

Results: Interplay among parameters: adding η_{0}.

In case F a very large initial asymmetry is assumed. Having adopted a relatively small $\delta \mathrm{m}$, oscillations start late but still efficient depletion is reached. Much higher asymmetry wrt η_{B} in the dark sector possible.

Overview of general features:

I. annihilation cross sections higher than usual σ_{0} are needed to reach the correct abundance!
2. oscillations start later than a simple guess $\sim 1 / \delta \mathrm{m}$, due to decoherence effects.

Overview of general features:

3. oscillations can modify DM thermal history only for sufficiently small $\delta m<$ $\delta m_{\text {max }}$.

For too large δm oscillations start too early and symmetrize the dark sector \rightarrow usual WIMP scenario!

Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM and can self-annihilate at late epochs. UsualWIMP (+ novel) indirect detection signatures.
i) BBN: if oscillations start after the end of BBN, i.e. if $t_{\text {osc }}>t_{\text {BBN }}$, as annihilations recouple, a large amount of energy is injected into the plasma. The set-up is similar to the one of late-decaying heavy DM progenitor states. However, other constraints stronger and imply $\mathrm{t}_{\text {osc }}<\sim 0.1 \mathrm{sec}$...

Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM and can self-annihilate at late epochs. Usual WIMP (+ novel) indirect detection signatures.
i) CMB: energy injected from DM annihilation during recombination ($\mathrm{z} \sim 1100$), results in an increased amount of free electrons, which survive to lower redshifts and affect the CMB anisotropies.
Limits on σ_{0} set using WMAP-7 data and ATACAMA telescope data, for DM annihilation channels to $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mu^{+} \mu^{-}$.
[Galli et al., Phys.Rev.D84 (201I)]

Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM and can self-annihilate at late epochs, as in usual WIMP scenarios.
iii) Present time annihilations: Fermi-LAT observation (non-detection) of dwarf spheroidal Galaxies. Stringent upper limits are derived by applying a joint likelihood analysis to 10 satellite galaxies with 2 years of FERMI-LAT data, and taking into account the uncertainty in the dark matter distribution in the satellites.
[Fermi-LAT collaboration, arXiv: I 108.3546 v 2$]$
The limits are particularly strong for hadronic annihilation channels (q \bar{q}) and $\mathrm{T}^{+} \mathrm{T}^{-}$.These limits are somewhat weaker for $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mu^{+} \mu^{-}$, as diffusion of leptons out of these systems is poorly constrained.

Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM and can self-annihilate at late epochs, as in usual WIMP scenarios.
iii) Present time annihilations: HESS observation of the Galactic Center halo region.
Due to the high energies covered by ACTs these limits are specially relevant for heavy >~ITeV DM.
This refers to a $q \bar{q}$ annihilation channel and assumes that the DM distribution in the Galaxy follows a cuspy profile ($\sim N F W$). These constraint are lifted in case of a cored profile!
[H.E.S.S. Collaboration, arXiv: I I03.3266]

Buckley+Profumo, 1109.2164 v 1

- simplified Boltzmann formalism, with constant oscillation rate:
- no oscillations
- no accounting for decoherence
- no scatterings on plasma
- no accounting for decoherence
- not concerned w obtaining correct $\Omega_{\mathrm{DM}} h^{2}$

This work, 1110.3809

$\sqrt{ }$ full matrix formalism

- oscillations
- accounting for decoherence
\checkmark scatterings on plasma
- accounting for decoherence
$\sqrt{ }$ requires correct $\Omega_{\mathrm{DM}} h^{2}$

Quantitatively:

- evolution is almost always very different
- final abundances differ (a few to more than one order of magnitude)

