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Cosmic Pie

The energy content of the Universe: 

ΩDM~22% (CMB, rotational curves, X 
rays from clusters...) 
Ωb~4% (CMB, BBN, ...) 
ΩΛ~74% (CMB+SNIa observations)

     1) Most of the Universe is unknown/Dark. 
☞ 2) ΩDM,  Ωb (and ΩΛ) are of a comparable magnitude.
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What determines ΩDM and Ωb?

ΩDM ↔ thermal decoupling (WIMPs): 
• initially DM is in equilibrium with 

thermal plasma; 

DM as a thermal relic 
from the Early Universe
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ΩDM ↔ thermal decoupling (WIMPs): 
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• ΩDM depends mainly on <σv>! 
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What determines ΩDM and Ωb?

ΩDM ↔ thermal decoupling (WIMPs): 
• initially DM is in equilibrium with 

thermal plasma; 
• as the Universe expands
→ DM interaction rates drops below the 
expansion rate of the Universe, 
→ DM decouples setting ΩDM.

• ΩDM depends mainly on <σv>! 
(weak cross section → WIMP miracle)
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What determines ΩDM and Ωb?

ΩDM ↔ thermal decoupling (WIMPs): 
• initially DM is in equilibrium with 

thermal plasma; 
• as the Universe expands
→ DM interaction rates drops below the 
expansion rate of the Universe, 
→ DM decouples setting ΩDM.

• ΩDM depends mainly on <σv>! 

Ωb ~0.
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Ωb ↔ primordial asymmetry;
baryons freeze-out due to a lack of anti-baryons! (otherwise, due to 
the high cross section they would annihilate away).

What determines ΩDM and Ωb?

ΩDM ↔ thermal decoupling (WIMPs): 
• initially DM is in equilibrium with 

thermal plasma; 
• as the Universe expands
→ DM interaction rates drops below the 
expansion rate of the Universe, 
→ DM decouples setting ΩDM.

• ΩDM depends mainly on <σv>! 

DM as a thermal relic 
from the Early Universe
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Just a coincidence? 
Or signal of a link?

nDM ↔ relic freeze-out
nb    ↔ baryogenesis  
            (lack of anti-baryons)

ΩDM → ΩDM (�σv�)

ΩDM
Ωb

∼ 5.86

nb
nγ

∼ 6.5 10−10

1

Two sectors, with mutually 
weak interactions and different 
time evolution, ...

Motivation for Asymmetric DM models
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DM carries a charge and is ‘asymmetric’ (like the visible sector) 
+ there is a connection between ∆B(X) and ∆B(B,L) causing nDM ~ nb. 

∆B(X)∆B(B,L)

ADM models generally involve the co-generation of an asymmetry in both 
dark matter and baryonic sectors or a transfer of asymmetries between the 
two through higher-dimensional operators.

General idea of ADM:
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→ mDM ~ 5a GeV!

General features of ADM:

1) ADM is naturally light. 
“The moment of truth for WIMP Dark Matter”
and new insights in particle and astroparticle physics.

COLLIDER SEARCHES

LHC Tevatron

HESS

CDMS

ICE CUBE

DIRECT DETECTION

Indirect DM searches through gamma rays *: 
Fermi-LAT colab, JCAP (2010); Buckley et al., White Paper 
on gamma ray astronomy; Serpico&Zaharijas, APJ (2008); 
Zaharijas, PRD (2008); Zaharijas&Hooper, PRD (2006), 
Hooper, Zaharijas, Finkbeiner&Dobler, PRD (2008).  

Indirect searches through cosmic rays                   
Bergstrom,Edsjo&Zaharijas, PRL (2009).

Direct detection 

searches                                                                                                                                                 
Zaharijas&Farrar, PRD (2005).

Phenomenology of physics Beyond the 
Standard Model *:
Sheperd, Tait&Zaharijas, PRD (2009), Hooper&Zaharijas, 
PRD (2007), Farrar&Zaharijas, PRL (2006), 
Farrar&Zaharijas, PRD (2004); Farrar&Zaharijas, PLB (2003).

✓COLLIDER SEARCHES

✓DIRECT 
DETECTION

2) ADM does not self-annihilate: No standard indirect detection 
signatures.



1) Co-generation of asymmetry in dark and our sectors: 

• Embed in EW baryogenesis via sphalerons/DM charged under the 
SU(2)(Nussinov, 1985, Barr, Chivukula&Farhi, 1990, Kaplan, 1992...).

Particle physics framework(s) - 
a brief overview of ideas 
~100 papers on the ADM idea have been published since the 80ties.

DM SM

Ni
yiNi LHλiNi χφ

Figure 1: A schematic view of our framework: the SM and DM sectors are indirectly connected

via Yukawa interactions with the same heavy right-handed neutrinos, Ni. The complex couplings,

λi and yi, lead to CP violation in Ni decays, and consequently particle-antiparticle asymmetries for

DM and leptons.

The generation of the DM abundance adheres to the following steps,

• A population of (at least) the lightest Majorana neutrino, N1, is generated in the early

universe.

• At temperatures below MN1 , these neutrinos decay out of equilibrium to both sectors.

The CP-violating decays lead to a lepton number asymmetry in both the SM and

hidden sector.

• As the universe cools well belowMN1 , the washout of lepton asymmetry, and its transfer

between the 2 sectors, becomes inefficient and the asymmetries are frozen-in. The

asymptotic asymmetry can, in general, be different in the two sectors due to different

branching fractions and/or washout effects.

• As usual, the SM lepton asymmetry is transferred into baryon asymmetry via elec-

troweak sphalerons. The symmetric baryon component is almost entirely wiped out

by hadronic annihilations, and only the asymmetric component survives.

• Similarly, the symmetric component of the DM number density is annihilated away

in the hidden sector. The relic abundance of DM is set by the remaining asymmetric

component. DM receives a Dirac mass, mχχχ̃, with another fermion state in the hidden

sector, χ̃.
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• leptogenesis triggered by WIMP freeze-out (Cui, Randall, Shuve, 

1112.2704; Chowdhury et al., 1110.5334).

(Falkowski et. al, 1101.4936: 
‘Two sector leptogenesis’)

• Generalized GUT-baryogenesis or leptogenesis:
(Davoudiasl et. al, 1008.2399, Blennow et al., 1009.3159, 

Falkowski et. al, 1101.4936, ...) CP-violating decays of 
heavy states lead to a lepton number asymmetry 
in both the SM and hidden sectors. 



Particle physics framework(s) - 
a brief overview of ideas 
~100 papers on the ADM idea have been published since the 80ties.

2) Asymmetry transfer: asymmetry generated in one sector and 
transferred to the other one:

•through (temperature dependent) mass mixing between X and L: (Cui, 
Randall, Shuve, 1106.4834.)

•through higher-dim operators (Kaplan et. al 0901.4117, Cohen&Zurek,0909.2035)
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where the exact proportions are O(1) and are determined
by the particular operator transferring the asymmetries, and

(nX − nX̄), (n! − n!̄) and (nb − nb̄) are the asymmetries
in the DM (X), leptons and baryons respectively. As a result
mX ∼ ΩDM

Ωb
mp, where mX is the DM mass, mp is the pro-

ton mass, ΩDM is the DM relic density and Ωb is the baryon

density of the universe. This relation implies a DM mass

mX # 5 GeV. Though the size of this mass is phenomeno-
logically viable, it does not directly link the DM sector to the

new physics which stabilizes the weak scale.

If the L-violating operators which transfer the asymmetry
have not decoupled as the DM becomes non-relativistic, there

is a Boltzmann suppression of the DM asymmetry (see [16,

17] for a more detailed discussion)

(nX − nX̄) ∼ (n! − n!̄) e−mX/Td , (2)

where Td is the temperature at which theL-violating operators
decouple. This implies that the DM mass can be much larger

[23]

mX =
45

29

1

NX

f(0)

f(mX/Td)

ΩDM

Ωb
mp, (3)

where NX is the number of DM families and f(x) is the
Boltzmann suppression factor given by

f(x) =
1

4 π2

∫ ∞

0

y2 dy

cosh2(1
2

√

y2 + x2)
. (4)

The decoupling temperature, Td, is naturally at the elec-

troweak scale if the corresponding higher dimensional opera-

tors are TeV scale suppressed. Once these L-violating opera-
tors decouple, the asymmetric DM density is frozen in.

Although the L-violating interactions have frozen out, L-
preserving interactions are expected to remain in thermal

equilibrium to lower temperatures. This is particularly natural

if the L-violating operators are generated by a combination
of the L-preserving interactions and an operator which intro-
duces a small amount ofL-violation into the theory. While the
L-preserving operators may be in thermal equilibrium longer
than the resulting L-violating interactions, they do not change
the relic DM density, which will be dominantly composed of

X̄s with essentially noXs.
If the asymmetry in the DM persisted until today, there

would be no indirect detection signal from X − X̄ annihi-

lation. If, however, there is a small violation of DM number

in the dark sector, as may result from a small DM Majorana

mass, X − X̄ oscillations will erase the asymmetry without

reducing the relic density, giving rise to a signal for indirect

detection experiments from X̄ X → "+ "−. In some cases the
hidden sector may be more complicated, and four lepton final

states may also result, e.g. X̄ X → "+ "− "+ "−. Since this
L-preserving interaction is expected to be stronger than the
L-violating operator which set the asymmetry, the associated
annihilation cross-section may be large enough to generate the

cosmic ray positron excesses.

There are many models which exhibit the generic features

described above. The rest of the letter is devoted to an illustra-

tive toy model which reproduces this scenario. Consider the

L-violating interaction (from [2])

Lasym =
1

M ′4
ij

X̄2(Li H)(Lj H) + h.c., (5)

where L is the lepton doublet, H is the SM Higgs doublet

and M ′ is a new L-violating mass scale. This term mediates
X̄ X̄ ↔ ν̄ ν̄, thereby transferring the lepton asymmetry to an
X − X̄ asymmetry. Consider in addition the L-preserving
interaction

Lsym =
1

M2
ij

X̄ X L̄i Lj + h.c., (6)

where M is a new L-preserving mass scale, which mediates
X̄ X ↔ "+ "−, ν̄ ν. A UV completion of these operators is

L & yi Li H ′ X̄ −
λ′

2
(H† H ′)2 + h.c., (7)

where H ′ is a new Higgs doublet. There is a Z2 symme-

try under which X , X̄ and H ′ are charged, which is unbro-

ken for 〈H ′〉 = 0. This symmetry ensures that the lightest
Z2 odd state, which we take to be X̄ , is stable. Upon inte-
grating out H ′, the effective scale of L-violation (Eq. (5)) is
M ′4

ij = m4
H′/(yi yj λ′), and the scale of the L-preserving op-

erator (Eq. (6)) is M2
ij = m2

H′/(yi yj). Also note that while
the model withNX = 1 does not violate L, it does violate any
two of electron number, muon number and tau number due to

the first interaction in Eq. (7). For weak scale parameters and

assuming that yi = y # 1, the rate for µ → e γ is∼ 15 orders
of magnitude above the current bound. One way to avoid this

bound is to assume a hierarchy of O(10−8) between the first
two generations of yi couplings. For NX = 3 the interactions
are expanded to

L = yij LiH
′ X̄j + mi

X X̄i Xi. (8)

For a generic yij matrix, the same large rates for µ → e γ
are present as describe above for NX = 1. If yij =
diag(y1, y2, y3) in this basis (where mX is diagonal), con-

tributions to µ → e γ vanish.
The λ′ term is present in Eq. (7) to break a global U(1)X ,

under which X, X̄ and H ′ are charged so that an X asym-

metric operator such as Eq. (5) can arise. For M and M ′ at

or above the electroweak scale and λ′ < 1, (M ′2
ij ) ! (v Mij),

implying that the L-violating operators decouple first (v ≡
〈H〉). The annihilations through the operator in Eq. (6) (and
Eq. (12) below) give rise to larger cross-sections than through

Eq. (5). The smaller cross-section from the L-violating oper-
ators set the DM asymmetry, and hence its relic density.

From Eq. (3),mX/Td ≈ 5− 8 formX ≈ 100− 1000GeV
(note there is only logarithmic sensitivity tomX ). Then using

H(Td) = nX̄ 〈σasym v〉 to set the L-violating cross-section
yields λ′ = 2×10−4 formX = 500GeV,NX = 1 and y = 1,
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〈H〉). The annihilations through the operator in Eq. (6) (and
Eq. (12) below) give rise to larger cross-sections than through

Eq. (5). The smaller cross-section from the L-violating oper-
ators set the DM asymmetry, and hence its relic density.

From Eq. (3),mX/Td ≈ 5− 8 formX ≈ 100− 1000GeV
(note there is only logarithmic sensitivity tomX ). Then using

H(Td) = nX̄ 〈σasym v〉 to set the L-violating cross-section
yields λ′ = 2×10−4 formX = 500GeV,NX = 1 and y = 1,

Asymmetry fixed after transfer operators freeze-out (TD).

ΩDM
ΩB

= nDM+nD̄M
nB

mDM
mB

c (nDM − nD̄M) = (nB − nB̄)
newline DM/D̄M

ΩB = mB nB

ΩDM ∼ mDM/(c mB) ΩB

ΩDM → ΩDM (�σv�, η0,mDM , δm)

ΩDM → ΩDM (η0)

ΩDM → ΩDM (�σv�)

ΩDM
Ωb

∼ 5.86

nX
nb

∼ neq
X (TD)

neq
b (TD)

nb
nγ

∼ 6.5 10−10

ΩDM ∼ 3×10−27 cm3s−1

�σv�

�σv� ∼ g4

TeV2 ∼ 3× 10−26 cm3s−1

1



The ADM story can change significantly in the presence of tiny 
majorana mass term which gives rise to DM particle-antiparticle 
oscillations.

Oscillating ADM provides a generalization of typical symmetric and 
asymmetric DM freeze-out cosmologies. (The asymmetric limit 
corresponds to oscillations slower than the lifetime of the Universe, 
while the symmetric limit corresponds to fast oscillations that turn on 
long before DM freeze-out.) 

DM/anti-DM oscillations?



Standard WIMP picture

ΩDM → ΩDM (�σv�)

ΩDM
Ωb

∼ 5.86

nb
nγ

∼ 6.5 10−10
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TeV2 ∼ 3× 10−26 cm3s−1
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
Sec. 3.3) and in the case which includes elastic
scatterings (bottom left panel, Sec. 3.4). The
blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum.
The arrow points to the value of the primordial
asymmetry, the green band is the correct relic
abundance (± 1σ).

neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry ηB: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
densities

Σ(x) = Y
+(x) + Y

−(x), ∆(x) = Y
+(x)− Y

−(x), (15)

In terms of these quantities, the Boltzmann equations read





Σ �(x) = −2
�σv� s(x)
xH(x)

�
1

4

�
Σ2(x)−∆2(x)

�
− Y

2
eq(x)

�
,

∆�(x) = 0,

(16)

which clearly shows that the difference ∆ between the populations remains constant and
equal to the initial condition η0; on the other hand, the total population of + and − particles
decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards
∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.

7

η0- primordial asymmetry.
Y+/Y- DM particle/antiparticle.
Σ= Y++Y-
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DM/anti-DM oscillations: 
A different relic decoupling scenario

1.→Oscillations fill a gap between the standard freeze out prediction 
(where ΩDM depends only on the annihilation cross section σ), and 
the ADM prediction where ΩDM depends only on the primordial DM 
asymmetry. 

2.Higher masses >~100 GeV are therefore ‘naturally’ available in this 
framework

3.Phenomenological bounds modified: DM is symmetric today, so it self-
annihilates! Traditional ADM bounds do not apply while standard 
WIMP bounds become relevant.



DM/anti-DM oscillations: 
The formalism

We study a system of Y+ and Y-, which possess an initial asymmetry 
(Y+ > Y−) and is subject to simultaneous:

i) oscillations Y+,- ↔ Y-,+ 
ii) annihilations Y+ Y- ↔ SMSM and 
iii) elastic scatterings Y+,- SM ↔ Y+,- SM. 

It is an interplay between a coherent process such as oscillations with 
incoherent processes such as annihilations and scatterings.

‘Density matrix formalism’ (originally developed for ν oscillations in the 
Early Universe) provides a framework to account for quantum coherence 
between particle and antiparticle states (Dolgov, 1981; Sigl&Raffelt, 1993; Dolgov 
et al., hep-ph/0202122v2, ...)



DM/anti-DM oscillations: 
The formalism

oscillations  
Y+ ↔ Y-

annihilations 
Y+ Y- ↔ SMSM

elastic scatterings 
Y SM ↔ Y SM

Y: co-moving DM abundance; 
diagonal elements are physical states.
off diagonal elements are their superposition.

In our study, δm is a free parameter that can range orders of magnitude. However,
in specific models, there will be some constraints. For instance, in the case where DM
carries lepton number and there is an additional Higgs doublet that gets no vev, δm can be
generated by a neutrino Majorana mass (e.g [?]). The DM Majorana mass is then bounded
by the neutrino mass:

δm ∼ y
2 λ

16π2
v

2 mν

m
2
S

(7)

If still DM carries a lepton number but there is now a Yukawa coupling with a singlet
scalar that gets a vev, the Majorana mass comes from the vev of a scalar field, DM mixes
with neutrinos, and this implies a majorana DM mass after integrating out the heavy RH
neutrino. Finally, if δm comes from the vev of a lepton-number violating scalar S, there may
be constraints in this case to prevent the washout of the asymmetry via DMDM → SS.

We will keep δm unconstrained as we want to remain model-independent. However, let
us note that a natural value in the fermionic case is obtained from the dimension-5 operator

XXH
†
H

Λ
(8)

When H gets its vev and taking Λ at the Planck scale we get the see-saw value δm ∼ 10−6

eV. This turns out to be a value that can lead to interesting effects. In fact, as we will
see shortly, if m � 10 TeV, δm should not be larger than 10−4 eV if we want oscillations
to have an effect on the final relic abundance. In the bosonic case, this translates into a
bound ∆ � 10−5 GeV.

here I discuss a couple of models (Arina-Sahu + ... )

3 Oscillation + annihilation + scattering formalism

Our aim is to study the evolution in time t of the populations of DM particles and their
antiparticles DM, denoted respectively by n

+ and n
−, which possess an initial asymmetry

and are subject to the simultaneous processes of annihilations DM DM → SM SM (with
SM being any Standard Model particle), oscillations DM ↔ DM and elastic scatterings
DM SM→ DM SM. For definiteness, we assume that particles are initially more abundant
than antiparticles, i.e. n

+
> n

−.
The proper tool to treat this problem, in which a coherent process such as oscillations is

overlapping with incoherent processes such as annihilations and scatterings, is provided by
the density matrix formalism, originally developed for the case of neutrino oscillations in the
Early Universe [47, 48], but which can be adapted to our present needs. One defines a 2×2
matrix, whose diagonal entries correspond to the individual number densities n

+ and n
− and

whose off-diagonal entries express the superposition of quantum states + and − originated
by the oscillations. As is customary, we introduce the comoving densities Y

± ≡ n
±
/s,

where s is the total entropy density of the Universe, and we follow the evolution in terms of
the dimensionless variable x = mDM/T , where mDM is the DM mass and T the temperature.
We will therefore work in terms of a comoving number density matrix

Y(x) =

�
Y

+(x) Y
+−(x)

Y
−+(x) Y

−(x)

�
(9)

(the curly font for Y will indicate in the following the matrix quantity). We will always
be interested in the epoch of radiation domination, during which the Hubble parameter

4

H(x) =
�

8π3g∗(x)/90 m
2
DMx

−2
/MPl = Hm/x

2 and t
−1 = 2H(x). In terms of x one also

has s(x) � 2π2
/45 g∗s(x) m

3
DM · (1/x3). 2 Here g∗(x) and g∗s(x) are the effective relativistic

degrees of freedom. We define the � notation as

� ≡
�
1 +

x

4

dg∗(x)/dx

g∗(s)

�
× d

dx
=

1

x H(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y

+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.
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+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.

5

mass hamiltonian acts as source of

and we take Γa ~〈σav〉I, Γs~σs I.

the see-saw formula, ∆2
/(2M), rather than the mass term breaking the DM number, 2∆,

and this factor is what enters in the off-diagonal component of the effective lagrangian. In
the (ϕ, ϕ∗) basis:

H =

�
m ∆2

/(4M)
∆2

/(4M) m

�
(5)

Therefore, for our phenomenological analysis, we will use the generic form

H =

�
m δm
δm m

�
where δm =

�
∆ if fermionic DM

∆2
/(4M) if bosonic DM

(6)

Note that the lagrangians of the models we are concerned with are similar to the ones of
inelastic dark matter [58, 59], although we are considering a much smaller ∆ so that at the
end we are focussing on different phenomenological properties. Typical examples are either
a WIMP interacting with a hidden U(1)� gauge boson or a WIMP charged under SU(2)L

[59, 46]. Both in the fermionic and bosonic cases, it is technically natural to have the
‘Majorana’ mass ∆ much smaller than the ‘Dirac’ mass m since ∆ violates a global U(1)DM

symmetry, due for instance to the vev of some scalar field and all quantum corrections to ∆
are proportional to itself. In our model-independent study, δm is a free parameter which,
even if very small, will be scanned over orders of magnitude in the sub-eV range. Still, let
us note that a natural value in the fermionic case is obtained from the dimension-5 operator

XXH
†
H

Λ
(7)

After electroweak symmetry breaking and taking Λ at the Planck scale we obtain the see-
saw value δm ∼ 10−6 eV. This value turns out to lead to interesting cosmological effects.
In fact, as we will see shortly, if m � 10 TeV, δm should not be larger than ∼ 1 eV if we
want oscillations to have an effect on the final relic abundance. In the bosonic case, this
translates into a bound ∆ � 10−2 GeV, which is less straightforward to explain from an
operator

λ ϕϕHH (8)

since that would require λ � 10−8. There are however ways to sequester the effects of
U(1)DM breaking, see e.g. [59].

Since the upper edge of cosmologically relevant values for δm may not be so far away
from the mass scale of neutrinos, it is tempting to try and link the two. Even when the two
scales vary by orders of magnitude, it is worth considering a possible common origin for
the Majorana masses of neutrino and dark matter. There is a significant literature which
relates neutrino mass and dark matter (e.g. [60] and references therein). There has also
been attempts to link DM and neutrinos together with leptogenesis. For instance, in the
recent Ref. [37], an extra hidden scalar φ couples DM with the right-handed neutrino N .
In this class of models, if φ acquires a vev, it generates a Majorana mass for DM but also
induces a mixing between DM and neutrinos that can lead to DM decay depending on the
choice of parameters, in particular on mN . Alternatively, an earlier interesting possibility
was brought up in [61] where a Z2 symmetry forbids a vev for the new scalar (an SU(2)L

doublet) and there is no Dirac mass linking ν with N , thus guaranteeing the stability of
DM. Nevertheless a Majorana mass can be generated at loop-level. Another explanation for
the stability of DM may be that a Z2 emerges as an unbroken remnant of a global U(1)B−L

[60].
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DM/anti-DM oscillations: 
Results:

Parameters of the system: mDM, σ0, δm, η0, ξ.

δm: oscillation parameter: tiny! typically 10−14 → 10−2 eV
If δm too large: oscillations occur too early, system is symmetric.
If δm too small: oscillations occur too late, system is totally asymmetric.

η0: primordial DM asymmetry: free, but naturally ~ ηb

ξ: strength of scattering on normal matter wrt naive ~GF expectations. 
Direct detection experiments impose ξ<10−2



DM/anti-DM oscillations: 
Results: σ0 vs mDM plane.
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Figure 4: Contour lines along which a correct ΩDMh2 can be obtained, for various values of the

initial asymmetry η0 (various colors) and several values of the oscillation parameter δm (labelled

lines marked by different dashings). The solid thick black line at the bottom represents the standard

case (η = 0, δm = 0). The labelled points (A to F) refer to the cases shown in Fig. 3. Top panels:
Oscillations and annihilations only, i.e. ξ = 0. Bottom panels: Adding elastic scatterings, i.e.

ξ = 10−2. The left panels consider initial asymmetries equal or close to the baryonic one. The

right panels focus on large initial asymmetries.
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DM/anti-DM oscillations: 
Results: Parameter space with phenomenological constraints.

Oscillations symmetrize dark sector→ constraints on WIMP annihilations apply.

➡Energy injected from DM annihilation during recombination (z~1100), results in 
an increased amount of free electrons, which survive to lower redshifts and affect 
the CMB anisotropies. [Galli et al., PRD (2011)] 

➡Present time annihilations (producing gamma rays)
Fermi-LAT observation (non-detection) of dwarf spheroidal Galaxies. [Fermi-LAT 
collaboration, PRL (2011)]

HESS observation of the Galactic Center halo region. Due to the high energies 
covered by ACTs these limits are specially relevant for heavy >~1TeV DM. 
[ H.E.S.S. Collaboration, arXiv:1103.3266]



DM/anti-DM oscillations: 
Results: Parameter space with phenomenological constraints.

Oscillations symmetrize dark sector→constraints on WIMP annihilations apply.
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DM/anti-DM oscillations: 
Results: δm vs mDM plane.

As oscillations symmetrize dark sector, usual WIMP constraints apply.
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Figure 5: Approximate illustration of the relevant parameter space in the scenarios we are
considering, for the case without elastic scatterings (left panel) and for the case with scatterings
(right panel). In each plot we report the region (lower area shaded in pink/orange) which is
excluded by the constraints discussed in Sec. 5 (the fuzzy edge in the large mDM portion indicates
that it is not possible to individuate a single δm in the area where the H.E.S.S. constraints matter)
and the region in which the evolution reduces to the standard freeze-out scenario (upper left area
shaded in grey). We stress that these figures only illustrate the approximate areas of interest on
the basis of eq. (36), while the results in all other plots in fig. 4 and 6 are determined by the full
numerical solutions.

value. In this case the annihilation rate is determined only by σ0, as usual. In other words,

when this condition is satisfied we do not have to worry about the time dependence of the

populations of the two species (and therefore of the annihilation rate) or about possible

partial repopulations of one of the two species.

BBN. The period of the synthesis of nuclei in the primordial plasma (i.e. Big Bang Nu-

cleosynthesis (BBN)) is the earliest test of standard cosmology, constraining the properties

of the Universe starting from when it was a few seconds old, or equivalently at the MeV

temperature scale. The good agreement of predicted abundances of the light elements with

their measured values makes BBN a powerful cosmological probe: injections of particles and

energy due to DM annihilation or decay, either during BBN, or at later times when those

abundances are established, are constrained, as they would alter the observed abundances

of primordial elements with respect to prediction (for a review see [67]).

More precisely, BBN can offer in principle two types of probes for the scenarios in

which we are interested. If oscillations start well before BBN, DM annihilations could

be happening at a low level during the BBN (without significantly changing ΩDM) and

the usual constraints on σ0 during that era would apply (see e.g. [68]). However these

constraints are typically weaker than the ones we will discuss below. A second, more

attractive possibility arises if oscillations start after the end of BBN, i.e. if tosc > tBBN. In

that case, as annihilations recouple, a large amount of energy is injected into the plasma.

The set-up is similar to the one of late-decaying heavy DM progenitor states. Such decays

have been extensively studied and stringent constraints set, in the energy injection versus

injection time plane. If the characteristic time tosc is longer than 0.1 s, we would in fact be

in a position to constrain the amount of energy stored in the dark sector before oscillations

start, i.e. the initial value of DM asymmetry η0. However, once again, this possibility

appears to be ruled out in the set-up in which we are interested, since tosc � 0.1 sec on all

19

Note: a natural value in the fermionic case is obtained from the 
dimension-5 operator:

In our study, δm is a free parameter that can range orders of magnitude. However,
in specific models, there will be some constraints. For instance, in the case where DM
carries lepton number and there is an additional Higgs doublet that gets no vev, δm can be
generated by a neutrino Majorana mass (e.g [?]). The DM Majorana mass is then bounded
by the neutrino mass:

δm ∼ y
2 λ

16π2
v

2 mν

m
2
S

(7)

If still DM carries a lepton number but there is now a Yukawa coupling with a singlet
scalar that gets a vev, the Majorana mass comes from the vev of a scalar field, DM mixes
with neutrinos, and this implies a majorana DM mass after integrating out the heavy RH
neutrino. Finally, if δm comes from the vev of a lepton-number violating scalar S, there may
be constraints in this case to prevent the washout of the asymmetry via DMDM → SS.

We will keep δm unconstrained as we want to remain model-independent. However, let
us note that a natural value in the fermionic case is obtained from the dimension-5 operator

XXH
†
H

Λ
(8)

When H gets its vev and taking Λ at the Planck scale we get the see-saw value δm ∼ 10−6

eV. This turns out to be a value that can lead to interesting effects. In fact, as we will
see shortly, if m � 10 TeV, δm should not be larger than 10−4 eV if we want oscillations
to have an effect on the final relic abundance. In the bosonic case, this translates into a
bound ∆ � 10−5 GeV.

here I discuss a couple of models (Arina-Sahu + ... )

3 Oscillation + annihilation + scattering formalism

Our aim is to study the evolution in time t of the populations of DM particles and their
antiparticles DM, denoted respectively by n

+ and n
−, which possess an initial asymmetry

and are subject to the simultaneous processes of annihilations DM DM → SM SM (with
SM being any Standard Model particle), oscillations DM ↔ DM and elastic scatterings
DM SM→ DM SM. For definiteness, we assume that particles are initially more abundant
than antiparticles, i.e. n

+
> n

−.
The proper tool to treat this problem, in which a coherent process such as oscillations is

overlapping with incoherent processes such as annihilations and scatterings, is provided by
the density matrix formalism, originally developed for the case of neutrino oscillations in the
Early Universe [47, 48], but which can be adapted to our present needs. One defines a 2×2
matrix, whose diagonal entries correspond to the individual number densities n

+ and n
− and

whose off-diagonal entries express the superposition of quantum states + and − originated
by the oscillations. As is customary, we introduce the comoving densities Y

± ≡ n
±
/s,

where s is the total entropy density of the Universe, and we follow the evolution in terms of
the dimensionless variable x = mDM/T , where mDM is the DM mass and T the temperature.
We will therefore work in terms of a comoving number density matrix

Y(x) =

�
Y

+(x) Y
+−(x)

Y
−+(x) Y

−(x)

�
(9)

(the curly font for Y will indicate in the following the matrix quantity). We will always
be interested in the epoch of radiation domination, during which the Hubble parameter

4

taking Λ~Mp, <H> → δm~10-6 eV.
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FB/FS refers to a transformation property of a L under C. 
If DM/fermions coupled through contact interaction: flavor blind (scalar, pseudo scalar, 
axial vector)/sensitive (vector and tensor).

[M. Cirelli, Basel, 2012]



Summary
  

•Scenarios with DM anti-DM oscillations preserve the attractive feature of ADM, 
that relates the DM primordial asymmetry and the baryon asymmetry and 
at the same time preserve also the appeal of weak scale DM mass and cross-sections.

•We suggest a formalism needed to treat the system of particles that oscillate 
coherently but at the same time suffer coherence-breaking elastic scatterings 
on the plasma and annihilations among themselves.

•We have applied such formalism to explore the phenomenologically available 
space, by varying the parameters of mDM, σ0, η0, δm, for two discrete choices 
of the parameter ξ that sets the strength of the elastic scatterings on the 
plasma.

•Work on particular particle physics cases in progress.



Extra slides



General features of ADM:

Phenomenological probes/constraints:

Stars can accumulate far more ADM particles than usual WIMPs, which 
can alter their dynamics. 

• ADM captured in neutron stars can become self-gravitating, forming a 
black hole that will eventually destroy the host stars. Observation of old 
pulsars in globular clusters then sets the limit on DM capture rate 
(elastic cross section) competitive w.r.t. direct detection experiments.
(McDermott et al., 1103.5472)



∆ is a term which violates a global U(1)DM and its non-zero value is 
responsible for the oscillations between Y+  and Y -. 
Natural to assume: ‘Majorana’ mass ∆ << ‘Dirac’ mass m.

We assume that all operators responsible for the asymmetry are switched off when we start

following the evolution, which is a reasonable when considering WIMP particles.

The effect of ∆X = 2 operators is to introduce a mass splitting and mixing between X

and X
c, which are no longer mass eigen states. Oscillations will be cosmologically relevant

if δm � H ∼ T
2
/mP l. Therefore, it is clear that for a too large δm, oscillations will start

too early, well before annihilations freese-out and we recover a standard symmetric DM

freese-out scenario. If on the other hand, δm is small, oscillations may start during or after

annihilations freese-out, leading to an interesting new phenomenology modifying the final

DM relic abundance, a situation that has not yet been studied in detail.

Let us first consider the case where X is a fermion and both Majorana and Dirac masses

are present. The general mass lagrangian using the Weyl spinors XL and XR is given by
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(X,X
c) basis:
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0 m+∆

�
U =
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m ∆
∆ m

�
(3)

A non-zero value for ∆ is responsible for the oscillations between X and X
c. We will

typically be considering the situation ∆ � m. A similar analysis applies to a complex

scalar field which splits into two quasi-degenerate real scalars. A well-known example is

the sneutrino that carries the same lepton numbers as the neutrinos and are distinguished

from their antiparticles, the anti-sneutrinos. In the presence of a lepton number violation

(for instance through the l̃l̃hh operator) sneutrinos can mix with antisneutrinos since no

other quantum numbers forbid the mixing [54, 55, 56, 57]. The mass squared matrix can

be written for a single generation as
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The mass eigen values are now m
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Therefore, in the bosonic case, the mass splitting betwen the mass eigen states is given by
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and this factor is what enters in the off-diagonal component of the effective lagrangian. In
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/(4M) m

�
(5)

Therefore, for our phenomenological analysis, we will use the generic form

H =
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fermionic DM

scalar DM

DM/anti-DM oscillations?
A small χ+/χ- mass splitting induces χ+ ↔ χ- oscillations.

(Panci, Cirelli, Servant, 
Zaharijas, 1110.3809)



In our study, δm is a free parameter that can range orders of magnitude.
Could the Majorana masses of neutrinos and dark matter have a common 
origin? 
(Cohen&Zurek, 0909.2035, Falkowski, 1101.4936), 
extra hidden scalar φ links right handed N and DM (leptogenesis 
framework)

if φ acquires a vev, it generates a 
Majorana mass for DM but also 
induces a mixing between DM and 
neutrinos that can lead to DM 
decay depending on the choice of 
parameters.

worthwhile to further explore.

4.2 Asymmetric Sterile Neutrinos from Leptogenesis

So far, we have assumed that the scalar in the hidden sector, φ, does not obtain a VEV at

low-energy. This permits DM to be stable when mφ > mχ. In this section, we relax this

assumption by allowing φ to receive a nonzero VEV. We will see that this simple change

leads to several new phenomenological possibilities. Because of the nonzero vφ ≡ �φ�, DM
now mixes with the left-handed neutrinos. Therefore, it constitutes a Dirac sterile neutrino

(we continue to assume that DM has a Dirac mass, which is necessary for its abundance to

be set by an asymmetry). This scenario thus provides a novel mechanism to account for the

correct relic abundance of sterile neutrino DM (for a nice review and references see Ref. [16]).

DM stability is no longer guaranteed, and several decay modes open up due to the mixing

with neutrinos. For the appropriate DM lifetime, this leads to observable cosmic rays at the

present epoch. Another consequence of vφ �= 0 is that DM inherits a small Majorana mass,

µχχ2, where µχ � mχ. As we discuss below, this leads to oscillations at late times, allowing

for a large annihilation rate at the present day, as in section 4.1. We consider the above

effects in detail below.

Recall that the seesaw Lagrangian (here simplified to the one-flavor case) is given by,

L ⊃ −mχχχ̃+
1

2
MN1N

2
1 + λN1χ �φ�+ y N1L �h�+ h.c. , (4.12)

where have included an explicit Dirac mass for χ, and we emphasize that both φ and the

SM higgs, h, receive VEVs. After integrating out the heavy right-handed neutrino, N1, we

have the following mass terms,

L ⊃ −mχ χχ̃− µχ

2
χ2 − mν

2
ν2 − µχν χν + h.c. , (4.13)

where µχ � mχ constitutes a small Majorana mass for χ, mν is the usual Majorana mass for

left-handed the neutrino, and µχν represents a mass-mixing between χ and ν. These masses

are given by,

µχ = λ2
v2φ
MN1

, mν = y2
v2EW
MN1

, µχν =

�
λ

y

vφ
vEW

�
mν . (4.14)
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23• Note: a natural value in the fermionic case is obtained from the 
dimension-5 operator:

In our study, δm is a free parameter that can range orders of magnitude. However,
in specific models, there will be some constraints. For instance, in the case where DM
carries lepton number and there is an additional Higgs doublet that gets no vev, δm can be
generated by a neutrino Majorana mass (e.g [?]). The DM Majorana mass is then bounded
by the neutrino mass:

δm ∼ y
2 λ

16π2
v

2 mν

m
2
S

(7)

If still DM carries a lepton number but there is now a Yukawa coupling with a singlet
scalar that gets a vev, the Majorana mass comes from the vev of a scalar field, DM mixes
with neutrinos, and this implies a majorana DM mass after integrating out the heavy RH
neutrino. Finally, if δm comes from the vev of a lepton-number violating scalar S, there may
be constraints in this case to prevent the washout of the asymmetry via DMDM → SS.

We will keep δm unconstrained as we want to remain model-independent. However, let
us note that a natural value in the fermionic case is obtained from the dimension-5 operator

XXH
†
H

Λ
(8)

When H gets its vev and taking Λ at the Planck scale we get the see-saw value δm ∼ 10−6

eV. This turns out to be a value that can lead to interesting effects. In fact, as we will
see shortly, if m � 10 TeV, δm should not be larger than 10−4 eV if we want oscillations
to have an effect on the final relic abundance. In the bosonic case, this translates into a
bound ∆ � 10−5 GeV.

here I discuss a couple of models (Arina-Sahu + ... )

3 Oscillation + annihilation + scattering formalism

Our aim is to study the evolution in time t of the populations of DM particles and their
antiparticles DM, denoted respectively by n

+ and n
−, which possess an initial asymmetry

and are subject to the simultaneous processes of annihilations DM DM → SM SM (with
SM being any Standard Model particle), oscillations DM ↔ DM and elastic scatterings
DM SM→ DM SM. For definiteness, we assume that particles are initially more abundant
than antiparticles, i.e. n

+
> n

−.
The proper tool to treat this problem, in which a coherent process such as oscillations is

overlapping with incoherent processes such as annihilations and scatterings, is provided by
the density matrix formalism, originally developed for the case of neutrino oscillations in the
Early Universe [47, 48], but which can be adapted to our present needs. One defines a 2×2
matrix, whose diagonal entries correspond to the individual number densities n

+ and n
− and

whose off-diagonal entries express the superposition of quantum states + and − originated
by the oscillations. As is customary, we introduce the comoving densities Y

± ≡ n
±
/s,

where s is the total entropy density of the Universe, and we follow the evolution in terms of
the dimensionless variable x = mDM/T , where mDM is the DM mass and T the temperature.
We will therefore work in terms of a comoving number density matrix

Y(x) =

�
Y

+(x) Y
+−(x)

Y
−+(x) Y

−(x)

�
(9)

(the curly font for Y will indicate in the following the matrix quantity). We will always
be interested in the epoch of radiation domination, during which the Hubble parameter

4

taking Λ~Mp, <H> → δm~10-6 eV.

DM/anti-DM oscillations: δm



H(x) =
�

8π3g∗(x)/90 m
2
DMx

−2
/MPl = Hm/x

2 and t
−1 = 2H(x). In terms of x one also

has s(x) � 2π2
/45 g∗s(x) m

3
DM · (1/x3). 2 Here g∗(x) and g∗s(x) are the effective relativistic

degrees of freedom. We define the � notation as

� ≡
�
1 +

x

4

dg∗(x)/dx

g∗(s)

�
× d

dx
=

1

x H(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y

+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.
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In this case the matrix form reduces to the usual Boltzmann eqn:

of incoming and outgoing particles has been performed. We neglect the effects related to

the quantum-statistical distribution of particles (e.g. Fermi-blocking factors). Here Γa is a

diagonal matrix (actually proportional to the identity in the case at hand) defined in such

a way that Γa Γ†a = �σv� I, where �σv� is the thermally averaged annihilation cross section.

It admits the usual expansion in even powers of the velocity v of the DM particles

�σv� = σ0 + σ1�v�2 +O(v
4
), (13)

and, for simplicity, we will always assume s-wave annihilations in the following, which

amounts to keep only the first term of the expansion. Ȳ is the charged conjugated matrix

of Y , i.e. the same quantity as the latter but with the role of particles and antiparticles

flipped. In formulæ Ȳ = CP
−1

· Y · CP, where CP = iσ2 =
�

0 1
−1 0

�
. Finally, the matrix

Y2
eq reads Y2

eq = diag(Y
2
eq, Y

2
eq).

In solving eq. (12), the off-diagonal components remain identically zero and the whole

information on the evolution of the system is encoded in the equations for the diagonal com-

ponents Y
±
. Such equations can then be recast in the more familiar Boltzmann form [49]:

Y
± �

(x) = −�σv� s(x)

x H(x)

�
Y

+
(x) Y

−
(x)− Y

2
eq(x)

�
. (14)

It is now straightforward to solve the equations (12) (or, equivalently, eq. (14), as it has

been done in [38, 39]). We show in fig.1 (upper left panel) the result in the specific case

η0 = ηB = 1.02 10
−10

(the latter being the value of the baryonic asymmetry, see e.g. [1])
3

and where we have taken a large annihilation cross section. Let us comment on the main

qualitative features. At small x, the presence of a primordial asymmetry is irrelevant and

both comoving densities follow essentially the equilibrium curve. Freeze-out happens when

the system runs out of targets, and then the absolute value of Y
+

(assumed to be the most

abundant species) approaches η0: Y
+

sits on a plateau while the contribution of Y
−

can be

neglected. As anticipated, therefore, in this typical aDM configuration the most relevant

parameter is the initial asymmetry ηB: it sets the asymptotic number density
4

and thus,

in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number

densities

Σ(x) = Y
+
(x) + Y

−
(x), ∆(x) = Y

+
(x)− Y

−
(x), (15)

In terms of these quantities, the Boltzmann equations read






Σ �
(x) = −2

�σv� s(x)

x H(x)

�
1

4

�
Σ2

(x)−∆2
(x)

�
− Y

2
eq(x)

�
,

∆�
(x) = 0,

(16)

3Note that we have defined here the quantities η, for DM and for baryons, in terms of the ratio of the
difference of number densities with entropy s: η = (n− n̄)/s. This notation is not to be confused with the
one (sometimes also denoted η) involving the ratio with the photon number density. In this latter notation,
the baryon to photon ratio (nB − n̄B)/nγ � nB/nγ equals the familiar value 6.18 10−10 [1].

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.

6

of incoming and outgoing particles has been performed. We neglect the effects related to

the quantum-statistical distribution of particles (e.g. Fermi-blocking factors). Here Γa is a

diagonal matrix (actually proportional to the identity in the case at hand) defined in such

a way that Γa Γ†a = �σv� I, where �σv� is the thermally averaged annihilation cross section.

It admits the usual expansion in even powers of the velocity v of the DM particles

�σv� = σ0 + σ1�v�2 +O(v
4
), (13)

and, for simplicity, we will always assume s-wave annihilations in the following, which

amounts to keep only the first term of the expansion. Ȳ is the charged conjugated matrix

of Y , i.e. the same quantity as the latter but with the role of particles and antiparticles

flipped. In formulæ Ȳ = CP
−1

· Y · CP, where CP = iσ2 =
�

0 1
−1 0

�
. Finally, the matrix

Y2
eq reads Y2

eq = diag(Y
2
eq, Y

2
eq).

In solving eq. (12), the off-diagonal components remain identically zero and the whole

information on the evolution of the system is encoded in the equations for the diagonal com-

ponents Y
±
. Such equations can then be recast in the more familiar Boltzmann form [49]:

Y
± �

(x) = −�σv� s(x)

x H(x)

�
Y

+
(x) Y

−
(x)− Y

2
eq(x)

�
. (14)

It is now straightforward to solve the equations (12) (or, equivalently, eq. (14), as it has

been done in [38, 39]). We show in fig.1 (upper left panel) the result in the specific case

η0 = ηB = 1.02 10
−10

(the latter being the value of the baryonic asymmetry, see e.g. [1])
3

and where we have taken a large annihilation cross section. Let us comment on the main

qualitative features. At small x, the presence of a primordial asymmetry is irrelevant and

both comoving densities follow essentially the equilibrium curve. Freeze-out happens when

the system runs out of targets, and then the absolute value of Y
+

(assumed to be the most

abundant species) approaches η0: Y
+

sits on a plateau while the contribution of Y
−

can be

neglected. As anticipated, therefore, in this typical aDM configuration the most relevant

parameter is the initial asymmetry ηB: it sets the asymptotic number density
4

and thus,

in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number

densities

Σ(x) = Y
+
(x) + Y

−
(x), ∆(x) = Y

+
(x)− Y

−
(x), (15)

In terms of these quantities, the Boltzmann equations read






Σ �
(x) = −2

�σv� s(x)

x H(x)

�
1

4

�
Σ2

(x)−∆2
(x)

�
− Y

2
eq(x)

�
,

∆�
(x) = 0,

(16)

3Note that we have defined here the quantities η, for DM and for baryons, in terms of the ratio of the
difference of number densities with entropy s: η = (n− n̄)/s. This notation is not to be confused with the
one (sometimes also denoted η) involving the ratio with the photon number density. In this latter notation,
the baryon to photon ratio (nB − n̄B)/nγ � nB/nγ equals the familiar value 6.18 10−10 [1].

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.

6

Formalism: Consider only DM annihilations

The density matrix equation reads:

comoving density Yeq =
45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x
. The actual equilibrium comoving densities

for the
+

and
−

species are respectively Y
+
eq = Yeq e

+ξ
, Y

−
eq = Yeq e

−ξ
, where ξ = µ/T

with µ being the chemical potential. Since they enter only as the product (see below),

the chemical potential disappears from the equations. It is also useful to introduce the

parameter η0 = Y
+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related

to ξ0 as ξ0 = arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�
(x) = − s(x)

xH(x)

�
1

2

�
Y(x),Γa Ȳ(x)Γ†

a

�
− Γa Γ

†
a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more

detailed collision integrals as discussed in [61, 62] and once the integral over the phase space

of incoming and outgoing particles has been performed. We neglect the effects related to

the quantum-statistical distribution of particles (e.g. Fermi-blocking factors). Here Γa is a

diagonal matrix (actually proportional to the identity in the case at hand) defined in such

a way that Γa Γ†
a = �σv� I, where �σv� is the thermally averaged annihilation cross section.

It admits the usual expansion in even powers of the velocity v of the DM particles

�σv� = σ0 + σ1�v�2 +O(v
4
), (13)

and, for simplicity, we will always assume s-wave annihilations in the following, which

amounts to keep only the first term of the expansion. Ȳ is the charge-conjugated matrix

of Y , i.e. the same quantity as the latter but with the role of particles and antiparticles

flipped: Ȳ = CP
−1

· Y · CP, where CP = iσ2 =
�

0 1
−1 0

�
. Finally, the matrix Y2

eq reads

Y2
eq =

�
Y 2
eq 0

0 Y 2
eq

�
.

In solving eq. (12), the off-diagonal components remain identically zero and the whole

information on the evolution of the system is encoded in the equations for the diagonal com-

ponents Y
±
. Such equations can then be recast in the more familiar Boltzmann form [63]:

Y
± �
(x) = −�σv� s(x)

xH(x)

�
Y

+
(x)Y

−
(x)− Y

2
eq(x)

�
. (14)

It is now straightforward to solve the equations (12) (or, equivalently, eq. (14), as it has

been done in [44, 45]). We show in fig.1 (upper left panel) the result in the specific case

η0 = ηB = 1.02 10
−10

(the latter being the value of the baryonic asymmetry, see e.g. [1])
3

and where we have taken a large annihilation cross section. Let us comment on the main

qualitative features. At small x, the presence of a primordial asymmetry is irrelevant and

both comoving densities follow essentially the equilibrium curve. Freeze-out happens when

the system runs out of targets, and then the absolute value of Y
+
(assumed to be the most

abundant species) approaches η0: Y +
sits on a plateau while the contribution of Y

−
can be

3Note that we have defined here the quantities η, for DM and for baryons, in terms of the ratio of the
difference of number densities with entropy s: η = (n− n̄)/s. This notation is not to be confused with the
one (sometimes also denoted η) involving the ratio with the photon number density. In this latter notation,
the baryon to photon ratio (nB − n̄B)/nγ � nB/nγ equals the familiar value 6.18 10−10 [1].
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annihilations
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y

+ �
(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
+ �

(x),

(19)

7

H(x) =
�

8π3g∗(x)/90 m
2
DMx

−2
/MPl = Hm/x

2 and t
−1 = 2H(x). In terms of x one also

has s(x) � 2π2
/45 g∗s(x) m

3
DM · (1/x3). 2 Here g∗(x) and g∗s(x) are the effective relativistic

degrees of freedom. We define the � notation as

� ≡
�
1 +

x

4

dg∗(x)/dx

g∗(s)

�
× d

dx
=

1

x H(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y

+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.

5

Formalism: Consider only DM annihilations

The density matrix equation reduces to:
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y
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(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
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(x),

(19)
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y

+ �
(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
+ �

(x),

(19)

7

Σ- the total number of 
particles 
Δ - the difference  

Formalism: Consider only oscillations

The density matrix equation reads:

And is equivalent to a simple set of two equations:

mass hamiltonian acts as 
source of oscillations

(b) ξ = 10−2, the maximum allowed value, which makes elastic scatterings, besides anni-

hilations and oscillations, important for the evolution of the DM and DM populations.

For large scattering, oscillations are damped, as in the case of standard neutrino mix-

ing in the early universe.

We stress again that eq.s (27) are just choices made for definiteness, since we lack a detailed

model of the interactions of DM with SM matter. For instance, if the DM particle couples

only to other dark states which ultimately decay to SM ones, ∆V and γs are expected

to be small. For another instance, if DM is leptophilic and couples only to leptons, then

the relevant asymmetry η in ∆V would be the leptonic one, which is poorly constrained.

Our formalism allows us to explore most of the possible parameter space while remaining

model-independent.

Finally, note that in order to reproduce the correct physical system with the last anti-

commutator in eq. (11) (which is an approximation to more detailed expressions of the

collision integrals [62]), one needs to forbid the terms proportional to γs in the equations

for the diagonal components of Y , as commonly done in the literature. This guarantees

that elastic scatterings do not have the effect of depleting the populations of Y + and Y
−.

As done in the previous Subsections, one can derive a set of Boltzmann-like equations

from the matrix equation in eq. (11) with eq. (26). They read






Σ �
(x) = −2

�σv� s(x)
xH(x)

�
1

4

�
Σ2

(x)−∆2
(x)− Ξ2

(x)− Π2
(x)

�
− Y

2
eq(x)

�
,

∆�
(x) =

2i δm

xH(x)
Ξ(x),

Ξ�
(x) =

2i δm

xH(x)
∆(x) − i∆V

xH(x)
Π(x) − γs

xH(x)
Ξ(x)− �σv� s(x)

xH(x)
Ξ(x)Σ(x),

Π�
(x) = − i∆V

xH(x)
Ξ(x)− γs

xH(x)
Π(x).

(28)

Yet one more functional degree of freedom coupled to the others, the function Π(x) =

Y
+−(x) + Y

−+(x), has to be introduced. The interplay of the coherent and incoherent

processes (annihilations and scatterings) can thus be thoroughly followed by using the full

density matrix formalism, either recast in the form of eq. (28) or, more conveniently, in the

form of eq. (11), to which we will adhere in the following.

In order to understand qualitatively the impact of adding incoherent scatterings on

the evolution of the populations of DM particles and antiparticles, we can consider the

(oversimplified) case of a system featuring oscillations and a constant γs. We neglect ∆V

and we switch off annihilations for simplicity. In this case the matrix equation in eq. (11)

schematically reads Y � = −i/(xH)

�
[H,Y ] − {Γs,Y}

�
. Proceeding in the same way as

discussed in Sec. 3.2, this equation can be recast into the same pair of coupled Boltzmann

equations in eq. (19), but with a more complicated Γosc = 2 δm2
/(γs + ω coth(ω/2H(x)),

where ω =
�
γ2
s − 4 δm2. It is then straightforward to recognize two limits. If elastic scat-

terings are negligible (γs � δm) then Γosc → δm tan(δm/H(x)), reducing the system to the

case with pure oscillations discussed in Sec. 3.2. If instead elastic scatterings are dominant

(γs � δm), then at late times Γosc approaches a constant value Γosc → 2 δm2
/γs. In this

situation, the eq.s (19) describe a system of Y + and Y
− densities that are driven, with a
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individuate the values of δm for which ΩDM reproduces the correct abundance, for the indicated
values of mDM.

with the same initial conditions as for eq. (11) and where the oscillation rate is defined as

Γosc(x) = δm tan

�
δm

H(x)

�
. (20)

These can also be written in terms of Σ and ∆ as






Σ �
(x) = 0,

∆ �
(x) = −2

Γosc(x)

x H(x)
∆(x).

(21)

It is now Σ which is constant in time, since oscillations exchange particle with antiparticle

but conserve the total number of bodies, while ∆(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle

becomes a DM particle at time t is P
+−
osc (t) = sin

2
(δm t). Oscillations start when H(x) �

δm (i.e T �
√

δm MPl). Slightly more precisely, one can define xosc via the condition

δm x
2
osc/H(mDM) � 2π, which gives

xosc �
�

8π3

90
g∗

�1/4
1√
MPl

mDM√
δm

≈ 2 · 10
−4

�
mDM

10 GeV

� �
eV

δm

�1/2

. (22)

This equation is plotted in Fig. 2, showing that a large range of possibilities is open,

depending on the values of the DM mass and of the δm parameter.
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These can also be written in terms of Σ and ∆ as
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(x) = 0,

∆ �
(x) = −2

Γosc(x)

x H(x)
∆(x).

(21)

It is now Σ which is constant in time, since oscillations exchange particle with antiparticle

but conserve the total number of bodies, while ∆(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle

becomes a DM particle at time t is P
+−
osc (t) = sin

2
(δm t). Oscillations start when H(x) �

δm (i.e T �
√

δm MPl). Slightly more precisely, one can define xosc via the condition

δm x
2
osc/H(mDM) � 2π, which gives

xosc �
�

8π3
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�1/4
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mDM√
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This equation is plotted in Fig. 2, showing that a large range of possibilities is open,

depending on the values of the DM mass and of the δm parameter.

8

Solutions are simple 
oscillations: 
- Σ stays constant, 
- Δ oscillates,  
Δ= Δ0 Cos(δm/2H(x))

And is equivalent to a simple set of two equations:

oscillation period: H~1/2t; tosc~2π/δm.

(b) ξ = 10−2, the maximum allowed value, which makes elastic scatterings, besides anni-

hilations and oscillations, important for the evolution of the DM and DM populations.

For large scattering, oscillations are damped, as in the case of standard neutrino mix-

ing in the early universe.

We stress again that eq.s (27) are just choices made for definiteness, since we lack a detailed

model of the interactions of DM with SM matter. For instance, if the DM particle couples

only to other dark states which ultimately decay to SM ones, ∆V and γs are expected

to be small. For another instance, if DM is leptophilic and couples only to leptons, then

the relevant asymmetry η in ∆V would be the leptonic one, which is poorly constrained.

Our formalism allows us to explore most of the possible parameter space while remaining

model-independent.

Finally, note that in order to reproduce the correct physical system with the last anti-

commutator in eq. (11) (which is an approximation to more detailed expressions of the

collision integrals [62]), one needs to forbid the terms proportional to γs in the equations

for the diagonal components of Y , as commonly done in the literature. This guarantees

that elastic scatterings do not have the effect of depleting the populations of Y + and Y
−.

As done in the previous Subsections, one can derive a set of Boltzmann-like equations

from the matrix equation in eq. (11) with eq. (26). They read






Σ �
(x) = −2

�σv� s(x)
xH(x)

�
1

4

�
Σ2

(x)−∆2
(x)− Ξ2

(x)− Π2
(x)

�
− Y

2
eq(x)

�
,

∆�
(x) =

2i δm

xH(x)
Ξ(x),

Ξ�
(x) =

2i δm

xH(x)
∆(x) − i∆V

xH(x)
Π(x) − γs

xH(x)
Ξ(x)− �σv� s(x)

xH(x)
Ξ(x)Σ(x),

Π�
(x) = − i∆V

xH(x)
Ξ(x)− γs

xH(x)
Π(x).

(28)

Yet one more functional degree of freedom coupled to the others, the function Π(x) =

Y
+−(x) + Y

−+(x), has to be introduced. The interplay of the coherent and incoherent

processes (annihilations and scatterings) can thus be thoroughly followed by using the full

density matrix formalism, either recast in the form of eq. (28) or, more conveniently, in the

form of eq. (11), to which we will adhere in the following.

In order to understand qualitatively the impact of adding incoherent scatterings on

the evolution of the populations of DM particles and antiparticles, we can consider the

(oversimplified) case of a system featuring oscillations and a constant γs. We neglect ∆V

and we switch off annihilations for simplicity. In this case the matrix equation in eq. (11)

schematically reads Y � = −i/(xH)

�
[H,Y ] − {Γs,Y}

�
. Proceeding in the same way as

discussed in Sec. 3.2, this equation can be recast into the same pair of coupled Boltzmann

equations in eq. (19), but with a more complicated Γosc = 2 δm2
/(γs + ω coth(ω/2H(x)),

where ω =
�
γ2
s − 4 δm2. It is then straightforward to recognize two limits. If elastic scat-

terings are negligible (γs � δm) then Γosc → δm tan(δm/H(x)), reducing the system to the

case with pure oscillations discussed in Sec. 3.2. If instead elastic scatterings are dominant

(γs � δm), then at late times Γosc approaches a constant value Γosc → 2 δm2
/γs. In this

situation, the eq.s (19) describe a system of Y + and Y
− densities that are driven, with a
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Now we can study an effect of decoherence of scattering on DM 
oscillations
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y

+ �
(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
+ �

(x),

(19)

7

H(x) =
�

8π3g∗(x)/90 m
2
DMx

−2
/MPl = Hm/x

2 and t
−1 = 2H(x). In terms of x one also

has s(x) � 2π2
/45 g∗s(x) m

3
DM · (1/x3). 2 Here g∗(x) and g∗s(x) are the effective relativistic

degrees of freedom. We define the � notation as

� ≡
�
1 +

x

4

dg∗(x)/dx

g∗(s)

�
× d

dx
=

1

x H(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y

+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.
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3.4 Including elastic scatterings

Dark Matter (and antiDM) particles travel through the dense primordial plasma and elas-

tically scatter on it via DM SM → DM SM processes, where ‘SM’ denotes any Standard

Model particle that is abundant enough in the plasma, i.e. essentially relativistic species.

This affects the evolution of the system in two main ways (we follow closely for this dis-

cussion the case of neutrino propagation in matter, see e.g. [50]): (i) an effective matter

potential V is generated by the coherent interactions and enters in the commutator part of

the density matrix equation; (ii) the incoherent scatterings give rise to a rate of interactions

γs entering in the anti-commutator part.

The whole system is therefore now described by eq. (11) with all pieces included and

where

H =

�
mDM + V (x) + ∆V (x) δm

δm mDM + V (x)

�
and Γs =

�
γs 0

0 γs

�
. (24)

The common terms on the diagonal of H of course do not have any effect on oscillations,

while the difference ∆V does. ∆V represents the effective energy shift of DM versus DM

induced by the baryon asymmetry of the medium. Effectively, it leads to a non-maximal

mixing angle, thus reducing the oscillation probability in the vacuum P+−
osc by a factor

4δm2/(4δm2 + ∆V 2). For simplicity we assume that δm is not affected by the medium.

The explicit form of ∆V and γs depends on the specific interactions of DM with the

plasma. Since we are mainly interested in the case of Weakly Interacting Dark Matter, we

mimic them from those of neutrinos. An important point to notice, however, is that the

same scatterings we are considering here are also those that would produce signals in DM

direct detection experiments, i.e. nuclear or electron recoils in low background set-ups. In

order to be consistent with direct detection experiments, therefore, we assume that the DM

coupling with matter is suppressed with respect to the weak coupling. On the basis of these

observations, we take

∆V = ξ
√

2 GF ηB

�
g∗s(x)− 2

�
nγ and γs = ξ2 45

π3
ζ(5) G2

F

�
g∗s(x)− 2

�m5
DM

x5
, (25)

where GF is the Fermi constant, nγ = 2/π2 ζ(3) m3
DM/x3 is the photon number density and

ζ(n) is the Riemann zeta function of n. In the equations above the presence of the factor

(g∗s(x)− 2) is due to the fact that we take into account that WIMP DM scatters on all the

relativistic degrees of freedom (counted by g∗s(x)) except for photons. Also, by using ηB in

the expression for ∆V , we are implicitly assuming that all relativistic SM species share the

same asymmetry, equal to the baryonic one.5

The parameter ξ expresses the suppression of the Fermi constant due to the fainter DM

coupling with matter, as discussed above. Direct detection experiments impose ξ � 10−2.

On the other hand, one can check that for ξ � 10−3 the presence of scatterings has

essentially no effect on the system. We will therefore consider in this work two main cases:

(a) ξ ≡ 0 (i.e. no scatterings), in which case the system reduces to the one discussed

in Sec. 3.3; this scenario makes more evident the effect of oscillations and maximizes

their importance.

5Notice that no term proportional to the DM asymmetry itself is present, since the DM and DM
population is Boltzmann suppressed in the regimes of our interest.
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Formalism: Oscillations + elastic scatterings
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y

+ �
(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
+ �

(x),

(19)

7

mass hamiltonian acts as 
source of oscillations

elastic scatterings described 
by a diagonal matrix.



Scatterings delay and damp 
oscillations!

20 40 60 80 100
10�12

10�11

10�10

10�9

10�8

x � mDM �T

C
om
ov
in
g
de
ns
ity

Y
�x�

�DM
0

Y�

Y�

�

YΗ0�0

Η0 � 1.02 10�10
Σ0 � 7 pb
mDM � 4.5 GeV

Η0

10 102 103
0.0

0.5

1.0

1.5

2.0

x � mDM �T

C
om
ov
in
g
de
ns
ity

Y
�x��1

01
0

�DM
0

Y�

Y�

�
� no osc

YΗ0�0

Η0 � 1.02 10�10

Σ0 � 14 pb
mDM � 9 GeV
∆m � 10�12 eV

Η0

10 102 103 104
10�14

10�13

10�12

10�11

10�10

10�9

10�8

10�7

x � mDM �T
C
om
ov
in
g
de
ns
ity

Y
�x�

�DM
0

Y�

Y�

�
� no osc

YΗ0�0

Η0 � 1.02 10�10

Σ0 � 25 pb
mDM � 1000 GeV
∆m � 10�4 eV

Ξ � 10�2
Η0

Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
discussed in Sec. 3.3) and in the case which
includes elastic scatterings (bottom left panel,
discussed in Sec. 3.4). In each plot the blue and
magenta lines represent respectively the comov-
ing population of n+ and n−, while the black
line gives their sum. The assumed values of
the parameters are indicated.

which clearly shows that the difference ∆ between the populations remains constant and

equal to the initial condition η0; on the other hand, the total population of
+

and
−

particles

decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards

∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the

system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

to the simple form

Y
�
(x) = − i

x H(x)

�
H,Y(x)

�
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

�
mDM δm
δm mDM

�
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be

explicitly solved analytically. The off-diagonal components can be plugged in the equations

for the diagonal components Y
±

and one finds that those correspond to the following

familiar Boltzmann equations:





Y

+ �
(x) = −Γosc(x)

x H(x)

�
Y

+
(x)− Y

−
(x)

�
,

Y
− �

(x) = −Y
+ �

(x),

(19)

7

H(x) =
�

8π3g∗(x)/90 m
2
DMx

−2
/MPl = Hm/x

2 and t
−1 = 2H(x). In terms of x one also

has s(x) � 2π2
/45 g∗s(x) m

3
DM · (1/x3). 2 Here g∗(x) and g∗s(x) are the effective relativistic

degrees of freedom. We define the � notation as

� ≡
�
1 +

x

4

dg∗(x)/dx

g∗(s)

�
× d

dx
=

1

x H(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y

+ and
Y

−. The evolution equation for the density matrix Y reads

Y
�(x) = − i

x H(x)

�
H,Y(x)

�
(11)

− s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�

− 1

x H(x)

�
Γs(x),Y(x)

�
.

On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y

±
0 ≡ Y

±(x0) = Yeq(x0) e
±ξ0

and Y
+−(x0) = Y

−+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, in
order to avoid running into numerical problems). Here Yeq denotes an equilibrium comoving

density Yeq = 45
2π4

�
π
8

�1/2 g∗
g∗s

x
3/2

e
−x. The actual equilibrium comoving densities for the +

and − species are respectively Y
+
eq = Yeq e

+ξ, Y
−
eq = Yeq e

−ξ, where ξ = µ/T with µ being
the chemical potential. Since they enter only as the product (see below), the chemical
potential disappears from the equations. It is also useful to introduce the parameter η0 =
Y

+
0 − Y

−
0 , which represents the initial DM – DM asymmetry and is related to ξ0 as ξ0 =

arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y
�(x) = − s(x)

x H(x)

�
1

2

�
Y(x), Γa Ȳ(x) Γ†a

�
− Γa Γ†a Y

2
eq

�
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals as discussed in [47, 48] and once the integral over the phase space

2The � sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.
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The same holds for annihilations. 

numerical solution of DMeq:

Now we can study an effect of decoherence of scattering on DM 
oscillations
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(b) ξ = 10−2, the maximum allowed value, which makes elastic scatterings, besides anni-

hilations and oscillations, important for the evolution of the DM and DM populations.

For large scattering, oscillations are damped, as in the case of standard neutrino mix-

ing in the early universe.

We stress again that eq.s (27) are just choices made for definiteness, since we lack a detailed

model of the interactions of DM with SM matter. For instance, if the DM particle couples

only to other dark states which ultimately decay to SM ones, ∆V and γs are expected

to be small. For another instance, if DM is leptophilic and couples only to leptons, then

the relevant asymmetry η in ∆V would be the leptonic one, which is poorly constrained.

Our formalism allows us to explore most of the possible parameter space while remaining

model-independent.

Finally, note that in order to reproduce the correct physical system with the last anti-

commutator in eq. (11) (which is an approximation to more detailed expressions of the

collision integrals [62]), one needs to forbid the terms proportional to γs in the equations

for the diagonal components of Y , as commonly done in the literature. This guarantees

that elastic scatterings do not have the effect of depleting the populations of Y + and Y
−.

As done in the previous Subsections, one can derive a set of Boltzmann-like equations

from the matrix equation in eq. (11) with eq. (26). They read






Σ �
(x) = −2

�σv� s(x)
xH(x)

�
1

4

�
Σ2

(x)−∆2
(x)− Ξ2

(x)− Π2
(x)

�
− Y

2
eq(x)

�
,

∆�
(x) =

2i δm

xH(x)
Ξ(x),

Ξ�
(x) =

2i δm

xH(x)
∆(x) − i∆V

xH(x)
Π(x) − γs

xH(x)
Ξ(x)− �σv� s(x)

xH(x)
Ξ(x)Σ(x),

Π�
(x) = − i∆V

xH(x)
Ξ(x)− γs

xH(x)
Π(x).

(28)

Yet one more functional degree of freedom coupled to the others, the function Π(x) =

Y
+−(x) + Y

−+(x), has to be introduced. The interplay of the coherent and incoherent

processes (annihilations and scatterings) can thus be thoroughly followed by using the full

density matrix formalism, either recast in the form of eq. (28) or, more conveniently, in the

form of eq. (11), to which we will adhere in the following.

In order to understand qualitatively the impact of adding incoherent scatterings on

the evolution of the populations of DM particles and antiparticles, we can consider the

(oversimplified) case of a system featuring oscillations and a constant γs. We neglect ∆V

and we switch off annihilations for simplicity. In this case the matrix equation in eq. (11)

schematically reads Y � = −i/(xH)

�
[H,Y ] − {Γs,Y}

�
. Proceeding in the same way as

discussed in Sec. 3.2, this equation can be recast into the same pair of coupled Boltzmann

equations in eq. (19), but with a more complicated Γosc = 2 δm2
/(γs + ω coth(ω/2H(x)),

where ω =
�
γ2
s − 4 δm2. It is then straightforward to recognize two limits. If elastic scat-

terings are negligible (γs � δm) then Γosc → δm tan(δm/H(x)), reducing the system to the

case with pure oscillations discussed in Sec. 3.2. If instead elastic scatterings are dominant

(γs � δm), then at late times Γosc approaches a constant value Γosc → 2 δm2
/γs. In this

situation, the eq.s (19) describe a system of Y + and Y
− densities that are driven, with a
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If scattering rates are >> δm, 
the solution is damped 
oscillator, with a decay time 
δm2/ϒ!
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Figure 2: Left panel: graphical illustration of the approximate relation in eq. (22), i.e. the
value of x at which oscillations start as a function of δm for a few indicative values of the DM
mass. The dotted line traces the modification to that relation in the case where annihilations are
active, see Sec. 3.1. Right panel: graphical illustration of the approximate relation in eq. (26),
i.e. the efficiency of oscillations in depleting the aDM excess (for definiteness, in the case of no
elastic scatterings, i.e. ξ = 0). The crossings of the diagonal dotted lines with the four solid lines
individuate the values of δm for which ΩDM reproduces the correct abundance, for the indicated
values of mDM.

with the same initial conditions as for eq. (11) and where the oscillation rate is defined as

Γosc(x) = δm tan

�
δm

H(x)

�
. (20)

These can also be written in terms of Σ and ∆ as






Σ �
(x) = 0,

∆ �
(x) = −2

Γosc(x)

x H(x)
∆(x).

(21)

It is now Σ which is constant in time, since oscillations exchange particle with antiparticle

but conserve the total number of bodies, while ∆(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle

becomes a DM particle at time t is P
+−
osc (t) = sin

2
(δm t). Oscillations start when H(x) �

δm (i.e T �
√

δm MPl). Slightly more precisely, one can define xosc via the condition

δm x
2
osc/H(mDM) � 2π, which gives

xosc �
�

8π3

90
g∗

�1/4
1√
MPl

mDM√
δm

≈ 2 · 10
−4

�
mDM

10 GeV

� �
eV

δm

�1/2

. (22)

This equation is plotted in Fig. 2, showing that a large range of possibilities is open,

depending on the values of the DM mass and of the δm parameter.
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Figure 2: Left panel: illustration of the approximate relation in eq. (22) and eq. (25), i.e. the
value of x at which oscillations start as a function of δm for a few indicative values of the DM
mass. The dotted lines trace the modification to that relation in the case where annihilations are
active, see Sec. 3.3. Right panel: graphical illustration of the approximate relation in eq. (34),
i.e. the efficiency of oscillations in depleting the aDM excess (for definiteness, in the case of no
elastic scatterings, i.e. ξ = 0, except for the dashed line marked by the label ξ = 10−2). The
crossings of the diagonal dotted lines with the four solid lines individuate the values of δm for
which ΩDM reproduces the correct abundance, for the indicated values of mDM.

decreases. The amount by which the amplitude of the oscillations decreases is determined
by the amount by which the sum of particles at disposal decreases.

All this is accounted for by eq. (11), that we reproduce here for convenience:

Y
�(x) = −i

1

xH(x)

�
H,Y(x)

�
− s(x)

xH(x)

�
1

2

�
Y(x),Γa Ȳ(x)Γ†

a

�
− Γa Γ

†
a Y

2
eq

�
. (23)

This equation can be recast into a set of coupled Boltzmann-like relations, namely:





Σ �(x) = −2
�σv� s(x)
xH(x)

�
1

4

�
Σ2(x)−∆2(x)− Ξ2(x)

�
− Y

2
eq(x)

�
,

∆�(x) =
2i δm

xH(x)
Ξ(x),

Ξ�(x) =
2i δm

xH(x)
∆(x) − �σv� s(x)

xH(x)
Ξ(x)Σ(x).

(24)

where Ξ corresponds to the difference between off-diagonal elements of the density matrix,
Ξ(x) = Y

+−(x) − Y
−+(x). From this, it is clear that the system cannot be reduced to

simple equations for the two functions Σ and ∆ (already defined above). In other words, the
interplay of coherent and incoherent processes cannot be thoroughly followed by focussing
only on the populations of Y + and Y

−, or their sum and difference: one more functional
‘degree of freedom’ is needed.

Some insight can anyhow be learnt by considering the (oversimplified) case featuring os-
cillations and a constant effective rate of annihilations, denoted γa, and neglecting variation

9

Rephrased in terms of 4 new variables, rather than density matrices.



To the right: a much smaller δm: the co-moving population of DM therefore 
sits for a longer time on the plateau determined by the initial asymmetry η0. 
Higher value of σ0 = 60 pb is now needed to reach the correct relic 
abundance. 
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. See text for details.

4 Results

We now illustrate with some more examples the physics involved in the solution of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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Results: Interplay among parameters: varying δm

 smaller δm, higher σ0. 



To the right: a higher, roughly weak-scale value of the DM mass. The correct 
relic abundance is achieved by starting oscillations earlier (to deplete Y more 
efficiently!), i.e. by choosing a larger δm.
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4 Results

We now illustrate with some more examples the physics involved in the solution of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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Results: Interplay among parameters: varying mDM

 higher mDM, higher δm. 
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. Notations are like in fig. 1, i.e. the blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum. The arrow points to the value of the primordial
asymmetry, the green band is the correct relic abundance (± 1σ). Notice that some plots have
linear scale while other have logarithmic ones, depending on structure which is necessary to show.
See text for more details.

◦ In case C, we keep instead the same annihilation cross section as in A, but we move
to a higher, roughly weak-scale value of the DM mass, mDM = 300 GeV. The correct
relic abundance is achieved by starting oscillations earlier than in A, i.e. by choosing
a much larger δm.
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. See text for details.

4 Results

We now illustrate with some more examples the physics involved in the solution of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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To the right: elastic scatterings included (ξ = 10−2) - the effect of incoherent 
scatterings that delay and damp the oscillations.  A larger cross section is needed to 
keep the annihilations active at late times and thus reach the right abundance.

Results: Interplay among parameters: adding ξ.

 added ξ, higher σ0. 



In case F a very large initial asymmetry is assumed. Having adopted a relatively 
small δm, oscillations start late but still efficient depletion is reached. Much higher 
asymmetry wrt ηB in the dark sector possible.

Results: Interplay among parameters: adding η0.

 η0>>ηB, higher σ0. 
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. See text for details.

4 Results

We now illustrate with some more examples the physics involved in the solution of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. Notations are like in fig. 1, i.e. the blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum. The arrow points to the value of the primordial
asymmetry, the green band is the correct relic abundance (± 1σ). Notice that some plots have
linear scale while other have logarithmic ones, depending on structure which is necessary to show.
See text for more details.

◦ In case C, we keep instead the same annihilation cross section as in A, but we move
to a higher, roughly weak-scale value of the DM mass, mDM = 300 GeV. The correct
relic abundance is achieved by starting oscillations earlier than in A, i.e. by choosing
a much larger δm.
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1. annihilation cross sections higher than usual σ0 are needed to reach the 
correct abundance! 

2. oscillations start later than a simple guess ~1/δm, due to decoherence 
effects.
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Figure 2: Left panel: graphical illustration of the approximate relation in eq. (22), i.e. the
value of x at which oscillations start as a function of δm for a few indicative values of the DM
mass. The dotted line traces the modification to that relation in the case where annihilations are
active, see Sec. 3.1. Right panel: graphical illustration of the approximate relation in eq. (26),
i.e. the efficiency of oscillations in depleting the aDM excess (for definiteness, in the case of no
elastic scatterings, i.e. ξ = 0). The crossings of the diagonal dotted lines with the four solid lines
individuate the values of δm for which ΩDM reproduces the correct abundance, for the indicated
values of mDM.

with the same initial conditions as for eq. (11) and where the oscillation rate is defined as

Γosc(x) = δm tan

�
δm

H(x)

�
. (20)

These can also be written in terms of Σ and ∆ as






Σ �
(x) = 0,

∆ �
(x) = −2

Γosc(x)

x H(x)
∆(x).

(21)

It is now Σ which is constant in time, since oscillations exchange particle with antiparticle

but conserve the total number of bodies, while ∆(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle

becomes a DM particle at time t is P
+−
osc (t) = sin

2
(δm t). Oscillations start when H(x) �

δm (i.e T �
√

δm MPl). Slightly more precisely, one can define xosc via the condition

δm x
2
osc/H(mDM) � 2π, which gives

xosc �
�

8π3

90
g∗

�1/4
1√
MPl

mDM√
δm

≈ 2 · 10
−4

�
mDM

10 GeV

� �
eV

δm

�1/2

. (22)

This equation is plotted in Fig. 2, showing that a large range of possibilities is open,

depending on the values of the DM mass and of the δm parameter.
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with x of the total population Σ. In this case, by combining the second and third equations
in (24), one arrives at an effective equation∆� � −2 δm2

/γa ∆, valid in the regime γa � δm.
Contrasted with the second of eq. (21), this shows that, in presence of annihilations, the
difference between the populations dims with a rate proportional to δm2

/γa, a point to
which we will come back later. However, we stress that this simplification does not allow
to include all the features of the system. We will stick to the full equation (23) for the
numerical solutions in the following.

In figure 1 (top right panel) we show the numerical result of eq. (23) (or, equivalently,
eq. (24)) for a specific illustrative case. Like for the top left example in the same figure, we
have again taken η0 = ηB, but here the population Y

+ sits only temporarily on the plateau
determined by η0. With a value of δm = 10−12 eV, oscillations start at x ∼ 300 and we
see Y − being repopulated. Given the relatively large annihilation cross section σ0 = 14 pb,
annihilations can then promptly resume and the total population Σ decreases. In the later
stages, Σ goes through a rapid series of plateaux and drops, until it rests on its asymptotic
value, determined by the freeze-out of annihilations. One can therefore have a final Y∞ � η0
and obtain the same ΩDM = ρDM/ρcrit = mDMY∞s/ρcrit with a large DM mass with respect
to the standard aDM case. In other words, this example illustrates how, as anticipated in
the introduction, ΩDM is no longer determined by η0 but by the combination of different
parameters η0,mDM, δm, σ0. We will discuss several illustrative choices for these in Section 4.
Note that our formalism allows to follow in detail the oscillatory pattern (evident at large
x in fig. 1b). In other approaches in the literature only an effective average of oscillations
has been employed (see e.g. [31, 34]). While this may be enough for an estimate of the
effect or for the late x behaviour, it may miss the details at the starting-up of oscillations.

Another non trivial effect of the interplay between annihilations and oscillations has to
do with the moment of the start of oscillations. While in a purely coherent (albeit expand-
ing) system with only oscillations, as the one we considered in Sec. 3.2, the conversions
start at a xosc determined via eq. (22), the addition of annihilations breaks such coherence
and effectively delays the picking up of oscillations. In top right panel fig. 1 the effect is
barely visible (namely, xosc equals ∼ 300 or so, instead of xosc ∼ 200 as it would be dic-
tated by eq. (22)), but for larger values of the �σv� parameter the suppression and delay
of oscillations becomes more important. In terms of the effective simplification discussed
below eq. (24), where the relevant time scale is now δm2

/γa, we obtain that oscillations
start when

xosc,ann �
�
Hm γa
2 δm2

�1/2

�
�
Hm σ0 sm η0/2

δm2

�1/5

≈ 12
�

mDM

100GeV

� �
10−7 eV

δm

�2/5 �
g∗s

10

�
g∗

10

σ0

1 pb

η0
ηB

�1/5

, (25)

where sm = s(x = 1), in analogy with Hm. In fig. 2 (left panel) we also report, for the
specific case of mDM = 10 GeV, the effective value of xosc,ann for an annihilation cross
section of σ0 = 100 pb. We plot the value as predicted by eq. (25) (thin dotted line) and
as determined numerically (thick dotted line).
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Figure 2: Left panel: illustration of the approximate relation in eq. (22) and eq. (25), i.e. the
value of x at which oscillations start as a function of δm for a few indicative values of the DM
mass. The dotted lines trace the modification to that relation in the case where annihilations are
active, see Sec. 3.3. Right panel: graphical illustration of the approximate relation in eq. (34),
i.e. the efficiency of oscillations in depleting the aDM excess (for definiteness, in the case of no
elastic scatterings, i.e. ξ = 0, except for the dashed line marked by the label ξ = 10−2). The
crossings of the diagonal dotted lines with the four solid lines individuate the values of δm for
which ΩDM reproduces the correct abundance, for the indicated values of mDM.

decreases. The amount by which the amplitude of the oscillations decreases is determined
by the amount by which the sum of particles at disposal decreases.

All this is accounted for by eq. (11), that we reproduce here for convenience:

Y
�(x) = −i

1

xH(x)

�
H,Y(x)

�
− s(x)

xH(x)

�
1

2

�
Y(x),Γa Ȳ(x)Γ†

a

�
− Γa Γ

†
a Y

2
eq

�
. (23)

This equation can be recast into a set of coupled Boltzmann-like relations, namely:





Σ �(x) = −2
�σv� s(x)
xH(x)

�
1

4

�
Σ2(x)−∆2(x)− Ξ2(x)

�
− Y

2
eq(x)

�
,

∆�(x) =
2i δm

xH(x)
Ξ(x),

Ξ�(x) =
2i δm

xH(x)
∆(x) − �σv� s(x)

xH(x)
Ξ(x)Σ(x).

(24)

where Ξ corresponds to the difference between off-diagonal elements of the density matrix,
Ξ(x) = Y

+−(x) − Y
−+(x). From this, it is clear that the system cannot be reduced to

simple equations for the two functions Σ and ∆ (already defined above). In other words, the
interplay of coherent and incoherent processes cannot be thoroughly followed by focussing
only on the populations of Y + and Y

−, or their sum and difference: one more functional
‘degree of freedom’ is needed.

Some insight can anyhow be learnt by considering the (oversimplified) case featuring os-
cillations and a constant effective rate of annihilations, denoted γa, and neglecting variation

9

Overview of general features:



For too large δm oscillations start 
too early and symmetrize the dark 
sector →usual WIMP scenario!
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. See text for details.

4 Results

We now illustrate with some more examples the physics involved in the solution of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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3. oscillations can modify DM thermal history only for sufficiently small δm< 
δmmax.

Overview of general features:



Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM 
and can self-annihilate at late epochs. 
Usual WIMP (+ novel) indirect detection signatures. 

i) BBN: if oscillations start after the end of BBN, i.e. if tosc > tBBN, as 
annihilations recouple, a large amount of energy is injected into the plasma. 
The set-up is similar to the one of late-decaying heavy DM progenitor states.  
However, other constraints stronger and imply tosc<~0.1 sec...
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. Notations are like in fig. 1, i.e. the blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum. The arrow points to the value of the primordial
asymmetry, the green band is the correct relic abundance (± 1σ). Notice that some plots have
linear scale while other have logarithmic ones, depending on structure which is necessary to show.
See text for more details.

◦ In case C, we keep instead the same annihilation cross section as in A, but we move
to a higher, roughly weak-scale value of the DM mass, mDM = 300 GeV. The correct
relic abundance is achieved by starting oscillations earlier than in A, i.e. by choosing
a much larger δm.
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Phenomenological constraints:

In these scenarios DM consists of equal portions of DM and anti-DM 
and can self-annihilate at late epochs. 
Usual WIMP (+ novel) indirect detection signatures. 

i) CMB: energy injected from DM annihilation during recombination 
(z~1100), results in an increased amount of free electrons, which survive to 
lower redshifts and affect the CMB anisotropies. 
Limits on σ0 set using WMAP-7 data and ATACAMA telescope data, for DM 
annihilation channels to e+e- and μ+μ-. 
[Galli et al., Phys.Rev.D84 (2011)] 



In these scenarios DM consists of equal portions of DM and anti-DM 
and can self-annihilate at late epochs, as in usual WIMP scenarios. 

iii) Present time annihilations: Fermi-LAT observation (non-detection) of dwarf 
spheroidal Galaxies. Stringent upper limits are derived by applying a joint 
likelihood analysis to 10 satellite galaxies with 2 years of FERMI-LAT data, 
and taking into account the uncertainty in the dark matter distribution in the 
satellites.
[Fermi-LAT collaboration, arXiv:1108.3546v2]

The limits are particularly strong for hadronic annihilation channels (qq ̄) and  
τ+τ-. These limits are somewhat weaker for e+e-and μ+μ-, as diffusion of 
leptons out of these systems is poorly constrained.

Phenomenological constraints:



In these scenarios DM consists of equal portions of DM and anti-DM 
and can self-annihilate at late epochs, as in usual WIMP scenarios. 

iii) Present time annihilations: HESS observation of the Galactic Center halo 
region. 
Due to the high energies covered by ACTs these limits are specially 
relevant for heavy >~1TeV DM. 
This refers to a qq ̄ annihilation channel and assumes that the DM 
distribution in the Galaxy follows a cuspy profile (~NFW). These 
constraint are lifted in case of a cored profile!
[ H.E.S.S. Collaboration, arXiv:1103.3266] 

Phenomenological constraints:



Comparing
Buckley+Profumo, 1109.2164v1
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This work, 1110.3809
•simplified Boltzmann formalism,
    with constant oscillation rate:

✓full matrix formalism

- no oscillations
- no accounting for decoherence

- oscillations
- accounting for decoherence

•no scatterings on plasma ✓scatterings on plasma
- no accounting for decoherence - accounting for decoherence

•not concerned w obtaining correct ✓requires correct

Quantitatively: 
- evolution is almost always very different

- final abundances differ (a few to more than one order of magnitude)

ΩDMh2ΩDMh2


