24th Rencontres de Blois Particle Physics and Cosmology

Searches for New Physics at BaBar

Stefano Zambito¹

On behalf of the BaBar Collaboration

¹INFN Turin, SLAC (now at Brandeis University (US))

Blois, May 30th, 2012

Can we solve the dark matter puzzle and illuminate the Higgs sector at the same time?

An Intriguing Perspective: NMSSM

Next to Minimal Supersimmetric Standard Model adds a Higgs singlet

- <u>Mixes</u> with the 2 MSSM higgs doublets: new state, A⁰
- CP-odd, can be light
- If $m_{A^0} < 2m_b$, can evade LEP constraints
- Can be produced in heavy-quarkonium decays (e.g. $\Upsilon \to \gamma A^0$)

NMSSM also adds a neutralino, χ^0

• $A^0 \to \chi^0 \chi^0$ might be dominant

The BABAR Experiment

PEP-II Asymmetric-energy B factory at SLAC running primarily at the $\Upsilon(4S)$ (10.58 GeV) with a center-of-mass boost $\beta\gamma = 0.55$

SVT: 5 double-sided layers. 97% efficiency, $15\mu m z$ -hit resolution (inner layers, \perp tracks). **SVT+DCH (momentum resolution)**: $\sigma(p_T)/p_T = 0.13\% \times p_T + 0.45\%$. **DIRC**: 144 fused silica bars, provides $K - \pi$ separation $\rightarrow 4.2(2.5)\sigma$ @ 2.4(4.0) GeV/c. **EMC**: 6580 *CsI*(*TI*) crystals. Energy resolution: $\sigma_E/E = 2.3\% \times E^{-1/4} + 1.91\%$.

BABAR Data Sample

- \approx 470 $M \Upsilon(4S)$
- $\approx 120M \Upsilon(3S)$ [10x Belle, 25x CLEO]
- $\approx 100 M \Upsilon(2S)$ [0.5x Belle, 10x CLEO]

 $BF(\Upsilon(nS) \rightarrow X)/BF(\Upsilon(4S) \rightarrow X) = \Gamma_{4S,total}/\Gamma_{nS,total}$ (assuming $\Gamma_{4S \rightarrow X} = \Gamma_{nS \rightarrow X}$)

A⁰ Light Higgs: Analysis Technique

$A^0 \rightarrow invisible$

$\Upsilon(3\mathsf{S},2\mathsf{S}) o \pi\pi\Upsilon(1\mathsf{S}), \Upsilon(1\mathsf{S}) o$ invisible $(+\gamma)$

- Key experimental signature: exactly 2 identified pions forming a vertex, and $M_{\pi\pi}^{REC} \simeq M_{\Upsilon(1S)}$
 - $\square \text{ PRL 103, 251801 (2009)} :: \Upsilon(1S) \rightarrow invisible$
 - \Box PRL 107, 021804 (2011) :: $\Upsilon(1S) \rightarrow inv. + \gamma$
- Also sensitive to $\Upsilon(1S) o \chi\chi$ (dark matter)

$A^0 \rightarrow leptons/hadrons$

2-body radiative decays $\Upsilon(3S,2S) ightarrow \gamma A^0$

• Key experimental signature: monochromatic photon in the CM frame, $E_{\gamma}^* = \frac{m_{\Upsilon}^2 - m_{A^0}^2}{2m_{\Upsilon}}$ • PRL 103, 081803 (2009) :: $A^0 \to \mu^+ \mu^-$ • PRL 103, 181801 (2009) :: $A^0 \to \tau^+ \tau^-$ • PRL 107, 221803 (2011) :: $A^0 \to hadrons$

$\Upsilon(3S, 2S) \rightarrow \pi\pi\Upsilon(1S), \Upsilon(1S) \rightarrow (A^0) \rightarrow \text{invisible}$

Event selection, features:

- Exactly 2 tracks forming a vertex
- Pions satisfy PID requirements
- No additional reconstructed objects

Residual backgrounds:

- *Combinatorial*: random $\pi\pi$ (sidebands)
- Peaking: $\Upsilon(1S) \rightarrow undetected (MC)$

NO SIGNIFICANT SIGNAL OBSERVED *No evidence for dark matter contribution*

Previous measurements BF(Y(IS)→invisible) CLEO: BF < 3.9 × 10⁻³ @ 90% CL PRD 75 031104 (2007) Belle: BF < 2.5 × 10⁻³ @ 90% CL PRL 98 132001 (2007)

- + Upper Limit 90%CL
 - BF(Y(1S) \rightarrow Invisible) < 3.0 x 10⁻⁴

• Add 1 photon with $E_{\gamma} > 0.15$ GeV

NO SIGNIFICANT SIGNAL OBSERVED

• 2D fit to $\pi\pi$ Recoil Mass & Missing Mass²

Υ (3S, 2S) $\rightarrow \gamma A^0, \ A^0 \rightarrow \mu^+ \mu^-$

Event selection, features:

- \blacksquare 2 tracks, forming vertex & μ PID
- 1 photon with E_{γ} >200 MeV
- Υ CM energy constrained to \sqrt{s}

Residual backgrounds:

- Continuum: $\Upsilon \rightarrow \gamma \mu \mu$
- Peaking: ϕ , J/ψ , $\psi(2S)$, $\Upsilon(1S)$

Fit & scan $M_{reduced} = \sqrt{m_{\mu\mu}^2 - 4m_{\mu}^2}$ NO SIGNIFICANT SIGNAL OBSERVED

Υ (3S, 2S) $\rightarrow \gamma A^0, \ A^0 \rightarrow \tau^+ \tau^-$

Event selection, features:

- Search for leptonic decays of τ 's: $\mu\mu$, ee, μe
- 2 identified tracks & 1 γ with $E_{\gamma} > 100 \text{ MeV}$
- Cuts on discriminating variables against $e^+e^- \rightarrow \gamma \tau \tau \ (p_{miss}, p_T^*, \text{ angles, etc...})$

MC & data-driven background estimation

A⁰ Searches at BABAR

A light CP-odd Higgs is clearly disfavoured! But $A^0 \rightarrow$ hadrons can still play a role...

R. Dermisek and J. Gunion, PRD 81, 075003 (2010): Hadronic decays of A^0 can be dominant, depending on its mass and tan β

Υ (3S, 2S) $\rightarrow \gamma A^0$, $A^0 \rightarrow$ hadrons

Event selection, features:

- \geq 2 tracks, PID
- 1 photon with E_{γ} >200 MeV
- Full event energy reconstructed
- Energy and beam constraints
 Residual backgrounds:
- ISR Continuum: $e^+e^- \rightarrow \gamma X, M$
- Υ Radiative decay: $\Upsilon \rightarrow \gamma X, M$

Fit & scan m(A⁰) NO SIGNIFICANT SIGNAL OBSERVED

 $\mathsf{BF} < (0.1-8) \times 10^{-5}$ at 90% CL

Search for Dark Sector Candidates at BABAR

Dark Forces, Theoretical Framework

PRD 79, 115008 (2009): Models introducing a new dark force with a $G_D \supset U_D(1)$ gauge group have been proposed to explain the observations of PAMELA, FERMI, DAMA/LIBRA, ATIC...

1) $U_D(1)$ mediated by a new gauge boson ("photon") with a GeV-scale mass

- DM particles can *annihilate* into pairs of dark bosons ~> SM lepton pairs (*p* kinematically forbidden).
- 2) How can SM particles couple to dark bosons? \sim Kinetic mixing: $\epsilon F^{\mu\nu}B_{\mu\nu}$

3) Very minimal scenario: 1 dark photon A', 1 dark higgs $h' \sim Narrow$ resonances, prompt decays

Search for a Dark Higgs h', Dark Photon A'

Event Selection, Features:

Higgs-strahlung $\propto \epsilon^2$

- At least 4 charged tracks
- Reconstructed 4-momentum,

Full. "exclusive" reconstruction

 $p_3 = p_{ee} - p_1 - p_2$

In both cases:

- □ 3 A' reconstructed masses equal within errors
- $\hfill\square$ PID requirement on I and π

Dark Forces at BABAR: Results (I)

Background estimation:

 Data driven tecnique: same-sign lepton pairs, like e⁺e⁺μ⁻μ⁻ππ

6 events surviving selection:

- 3 entries each, i.e. all possible assignments of h' → A'A'
- Most likely $e^+e^- \rightarrow e^+e^-\rho\rho$, $e^+e^- \rightarrow e^+e^-\omega\omega$
- Consistent with pure background hypothesis from control sample

NO SIGNIFICANT SIGNAL OBSERVED

$$\sigma({
m e^+e^-}
ightarrow {
m A'^*}
ightarrow {
m A'h'}, {
m h'}
ightarrow {
m A'A'}) \ < 10-100$$
 ab, at 90% CL

[arXiv:1202.1313]

Dark Forces at BABAR: Results (II)

[arXiv:1202.1313]

The limits on the cross section are translated into 90% UL on $\alpha_{\rm D}\epsilon$

- $\alpha_D = g_D^2/4\pi$
- $g_D = \text{dark sector coupling constant}$
- $\epsilon = mixing strength$

ACCEPTED FOR PUBLICATION

- In BABAR, we have searched for evidences of CP-odd light Higgs and of dark sector candidates in the $\Upsilon(2S)$ and $\Upsilon(3S)$ data
- No significant signal observed
- More stringent limits set on space parameters of NP models
- Several low energy NP searches are still ongoing...
- New results are expected in the near future!

Thanks for Your Attention!

Υ (3S, 2S) $\rightarrow \gamma A^0, A^0 \rightarrow hadrons$

R. Dermisek and J. Gunion, PRD 81, 075003 (2010): Hadronic decays of A^0 can be dominant, depending on its mass and $\tan \beta$

