

Dark Matter

Dark Matter Candidate: WIMPs

- WIMPs: Stable (or long lived) particles, relics from the Big Bang
 - Supersymmetry independently predicts weakly interacting massive particles (e.g. Neutralinos)
 - M_{WIMP} : in the range 10 GeV 1 TeV
- Direct Detection: WIMPs (like neutrons) scatter elastically off nuclei
 - Photons and electrons scatter off atomic electrons
 - Recoil energy ≈ few keV tens of keV (require detectors with low threshold)
 - Detectable via light, charge, phonons, or a combination of them

Dual Phase Xe Detector

Dual Phase: Gas and Liquid Xe High density (~3 g/cm³) and high Z

- Sensitive to both Scintillation Light (S1) and Charge (S2)
 - Different yields of light and charge for nuclear recoils (WIMPs, neutrons) and electron recoils (γ, e-)
 - Event-by-event discrimination: charge/light => bands
 - Background rejection: >99.5% (LUX)
 - Nuclear recoil acceptance: 50%

Position reconstruction

- Z from S2-S1 timing, XY from S2 pattern
- Self-shielding:
 - Active: veto high-E and multiple scatters
 - Passive: fiducial volume

May 2012 v4 <4>

The LUX Detector

- To be deployed in the Sanford Lab at the Homestake Mine (South Dakota, USA)
- **1.5 km deep** (4300 m.w.e., μ flux reduced x10⁻⁷ compared to sea level)
- **350kg Liquid Xe** Detector (59 cm height, 49 cm diameter)

Sanford Lab at Homestake Mine

- To be deployed in the Sanford Underground Research Facility (SURF) at the Homestake Mine (South Dakota, USA)
- **-1.5 km deep** (4300 m.w.e., μ flux reduced x10⁻⁷ compared to sea level)

LUX Water Shield

- Water Tank: ø = 8 m, h = 6 m (300 Tonnes)
 - 3.5 m shield thickness on the sides
 - Inverted steel pyramid (20 tons) under tank to increase shielding on top/bottom
 - Muon Veto: 20 PMTs (ø = 10")

Ultra-low background facility

- Gamma event rate reduction: 2 x 10⁻¹⁰
- High-energy neutrons (> 10 MeV) rate reduction
 ~ 10⁻³ => < 100 ndru,

LUX Internals

- All detector components are screened for radioactivity at the SOLO counting facilities and by LBNL
 - Internal backgrounds dominate over external (from cavern rock)
- Active region defined by PTFE slabs (high reflectivity for Xe scintillation light)

Construction materials chosen for low radioactivity (Ti, Cu, PTFE)

PMT radioactivity gives dominant background ~ 12 mBq/PMT

Majority of materials heavily shielded by Cu

LUX Surface Run (at Homestake)

- Stable cryogenic operation for > 100 days
 - Ended on Feb 2012, detector being moved underground
- First successful use of technologies proposed for tonne-scale detectors:
 - Biggest double phase Xe detector in operation: 350 kg, 122 PMTs
 - Low background Titanium vessel
 - Thermosyphon cooling
 - Full scale deployment in water tank

Surface Run – Cooling System

- Thermosyphon: ~kW capacity, multiple cold head deployment;
- High flow plumbing and heat exchanger for rapid circulation through external purifier: 35 liters per minute (300 kg/day)
 - Very low heat load: < 5 W

Surface Run – Signals

- **•**Functional trigger, DAQ, analysis chain:
 - 3 TB of data generated and processed backgrounds and gamma source calibrations
 - DAQ samples at 100 MHz with 14 bit depth;
 - 122/122 PMTs are working (1 faulty base)
 - PMT operation limited to low gain (1e5 5e5) due to overwhelming Muon background at surface (~300 MeV per event => too much light)
 - E resolution: ~ 6% at 662 keV (Cs137), ~ 3% at 5.5 MeV (α's)

Surface Run – Light and Charge

- Light collection: ~ 8 phe/keV_{ee} in detector center (zero electric field)
 - Comparison with MC simulation: R_{PTFE} > 95%; λ_{abs} > 5 m
- •Xe purity (Electron lifetime) monitored by muon, alpha and gammas signals.
 - Muon tagging system using plastic scintillator panels
 - Alphas from ²²²Rn injection
- Electron lifetime measured by alphas: > 90 μs (12 cm)
 - Broken internal pipe limited circulation through active region and purification performance
 - Lifetime known to be higher, a limiting pulse threshold effect under study

Surface Run – Event Reconstruction

 $\mathbf{\Psi} \mathbf{E}_2 >> \mathbf{E}_1$

Event Reconstruction Software: Mercury

- Light Response Functions (LRFs) are obtained by iteratively fitting the radial distribution of events for each PMT
- Uses χ^2 minimization of S2 hit pattern (relative to LRFs) to reconstruct each event position
- LRFs can be found using background data
- **Reconstruction of XY from** α interactions (E = 5.5 MeV) near anode grid resolves grid wires with 5 mm pitch

Underground Deployment (Homestake Mine)

Underground Science Timeline

- Start dismantling at surface March 2012
- Start installation underground May 21, 2012
- Finish installation September 2012
- Finish commissioning November 2012
- First science data before the end of 2012
- First result in first quarter of 2013
- 300 days result by end 2013

Sensitivity Limits

LUX WIMP Sensitivity

- LUX is designed for very low ER background rate, with strong emphasis on unambiguous discovery of WIMP signal
- Contrast LUX with current best limit (XENON100)
 - 40 kg x 100 day XENON100 exposure => 100 kg fiducial x 40 days in LUX

de Viveiros - LIP-Coimbra

LUX WIMP Sensitivity

- LUX is designed for very low ER background rate, with strong emphasis on unambiguous discovery of WIMP signal
- Contrast LUX with current best limit (XENON100)
 - 40 kg x 100 day XENON100 exposure => 100 kg fiducial x 40 day in LUX
- What will WIMPs look like in LUX?
 - Best 90% CL Exclusion Limit: σ_{WIMP} = 10⁻⁴⁴ cm² at 100 GeV

LUX Backgrounds – Self-shielding

At LUX's scale, self-shielding allows nearly background-free acquisition by using a reduced fiducial:

Simulated WIMP signal in LUX

- •Example: m_{WIMP} = 100 GeV/c² and σ_{WIMP} = 1x10⁻⁴⁴ cm² (sensitivity limit set by XENON100)
- 40 days acquisition, 25 kg fiducial mass
 - 1 single background event, before cuts and discrimination (ER Background ~390 µdru)

Simulated WIMP signal in LUX

- =Example: m_{WIMP} = 100 GeV/c² and σ_{WIMP} = 1x10⁻⁴⁴ cm² (sensitivity limit set by XENON100)
- 100 days acquisition, 25 kg fiducial mass
 - Still only a couple of background events; well defined WIMP signal

Simulated WIMP signal in LUX

- =Example: m_{WIMP} = 100 GeV/c² and σ_{WIMP} = 1x10⁻⁴⁴ cm² (sensitivity limit set by XENON100)
- 300 days acquisition, 25 kg fiducial mass
 - Longer exposure, signal becomes better defined
 - Still only a handful of background events, before cuts and discrimination

The LUX Collaboration

Brown

COMPARENT.	
Richard Gaitskell	PI, Professor
Simon Fiorucci	Research Associate
Monica Pangilinan	Postdoc
Jeremy Chapman	Graduate Student
Carlos Hernandez Faham	Graduate Student
David Malling	Graduate Student
James Verbus	Graduate Student

Case Western

Thomas Shutt
Dan Akerib
Mike Dragowsky
Tom Coffey
Carmen Carmona
Karen Gibson
Adam Bradley
Patrick Phelps
Chang Lee
Kati Pech
Tim Ivancic

Graduate Student Graduate Student

University of Rochester

Frank Wolfs Wojtek Skutski Eryk Druszkiewicz Mongkol Moongweluwan

PI, Professor

PI, Professor

Postdoc Graduate Student

Graduate Student

Graduate Student

Research Associate Professor Research Associate Postdoc

PI, Leader of Adv. Detectors Group

Mechanical Technician

Staff Physicist

Staff Physicist

Engineer

PI, Professor

•

.....

Lawrence Livermore

Adam Bernstein Dennis Carr Kareem Kazkaz Peter Sorensen John Bower

SD School of Mines

Xinhua Bai

Collaboration was formed in 2007 and fully funded by DOE and NSF in 2008.

PI. Professor

PI, Professor

Senior Engineer

Senior Machinist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Professor

Professor

Postdoc

Postdoc

Graduate Student

Graduate Student

Professor

University of Maryland

Carter Hall	PI, Professor
Attila Dobi	Graduate Student
Richard Knoche	Graduate Student

Texas A&M ĀГМ

James White Robert Webb **Rachel Mannino Clement Sofka**

UC Davis

Mani Tripathi
Robert Svoboda
Richard Lander
Britt Hollbrook
John Thomson
Matthew Szydagis
Richard Ott
Jeremy Mock
James Morad
Nick Walsh
Michael Woods
Sergey Uvarov

LIP Coimbra

Isabel Lopes	PI, Professor
Jose Pinto da Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Luiz de Viveiros	Postdoc
Alexander Lindote	Postdoc
Francisco Neves	Postdoc
Claudio Silva	Postdoc

Imperial College Imperial College London London

Henrique Araujo	PI, Senior Lecturer
Fim Sumner	Professor
Alastair Currie	Postdoc

University of South Dakota

Dongming Mei	PI, Professor
Chao Zhang	Postdoc
Dana Byram	Graduate Student
Chris Chiller	Graduate Student
Angela Chiller	Graduate Student
Chao Zhang Dana Byram Chris Chiller Angela Chiller	Postdoc Graduate Student Graduate Student Graduate Student

Lawrence Berkeley + UC Berkeley

Bob Jacobsen David Taylor Mia ihm

PI, Professor Engineer Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer

Yale

Daniel McKinsey	PI, Professor
Peter Parker	Professor
James Nikkel	Research Scientist
Sidney Cahn	Lecturer/Research Scientist
Alexey Lyashenko	Postdoc
Ethan Bernard	Postdoc
Markus Horn	Postdoc
Blair Edwards	Postdoc
Louis Kastens	Graduate Student
Nicole Larsen	Graduate Student
Evan Pease	Graduate Student

Summary

- **LUX** is the largest double-phase Xe detector in operation
- Surface Run on-site (at Homestake mine) marked successful test of technologies proposed for tonne-scale detectors
 - >100 days cryogenic operation
 - Full deployment inside water shield
- •All systems fully tested and characterized
 - Purification 300 kg/day
 - Excellent light collection (8 phe/keV) => low energy threshold
 - All PMTs working
 - DAQ, Trigger and Data Processing Software ready

-Underground deployment this summer, science data by end of 2012

 Matches and surpasses all existing sensitivity limits within days of science run start (for WIMPs with mass above ~10 GeV)

The End

Thank You

