Investigating Anisotropies in the Cosmic Expansion with the Nearby Supernova Factory

$24^{\text {th }}$ Rencontres de Blois
Particle Physics and Cosmology

For the Nearby Supernova Factory Matthias Kerschhaggl

Physikalisches Institut Universitaet Bonn

Physikalisches Institut
Nussallee 12, 53115 Bonn AG Prof. Marek Kowalski

Contents

- The Nearby Supernova Factory
- The Anisotropic Universe

Contents

- The Nearby Supernova Factory
- The Anisotropic Universe

The Nearby SNfactory

1. Discover

Palomar

3. Analyze

2. Observe

SNF20070803-005, $z=0.031$

SNIFS UH 2.2-m Every 2-3 nights

Custom, unique spectrometer designed for nearby SN obs

Supernova Integral Field Spectrograph (SNIFS)

UH 2.2m

3D Datacube

The SNF Dataset

Contents

- The Nearby Supernova Factory
- The Anisotropic Universe
- On smaller scales ($<400 \mathrm{Mpc}$) the universe is neither homogeneous nor isotropic
- Structures and matter concentrations emerge, the

Copernican

 principle becomes invalid- Overdensities cause gravitational attraction and lead to bulk flows and peculiar velocities

SN la as peculiar velocity tracers

- Inhomogeneities/anisotropies since ~ 50 years
- large scale structures, deviations in Hubble flow
- SN la tracing local flows (e.g. Riess et al. 1995)
- Bulk flow in the nearby universe towards GA/SSC/CMB dipole
- Colin et al. (2011):

SSC imprinted in Union2 dataset

- We studied the nearby universe ($z<0.1$) using
117 SN la $0.014<z<0.12$ from the Nearby
Supernova Factory

Smoothing residuals Method

(Colin et al. 2011 MNRAS 2011)

- Smoothing of Hubble residual with Gaussian weights depending on SN distance

$$
\begin{aligned}
& Q(\theta, \phi)=\sum_{i=1}^{N} q_{i}\left(z_{i}, \theta_{i}, \phi_{i}\right) W\left(\theta, \phi, \theta_{i}, \phi_{i}\right) \\
& W\left(\theta, \phi, \theta_{i}, \phi_{i}\right)=\frac{1}{\sqrt{2 \pi} \delta} \exp \left[-\frac{L\left(\theta, \phi, \theta_{i}, \phi_{i}\right)^{2}}{2 \delta^{2}}\right] \\
& \Delta Q_{\text {data }}=Q\left(\theta_{\max }, \phi_{\max }\right)-Q\left(\theta_{\min }, \phi_{\min }\right)
\end{aligned}
$$

q... residuals, W... weights, L... SN pair distance on unit sphere

- Analysis of different redshift bins in Union2
- Find anisotropy pattern at 2-3 sigma level consistent with direction of the Shapley Superluster (SSC) (z~0.035-0.055):
"We show that the Union 2 data provide the first evidence of the infall on to Shapley; SNe Ia which are falling away from us and towards Shapley are statistically dimmer than those which lie beyond this supercluster and are falling towards us."

Shapley Infall

At small redshifts $z<0.06$ isotropic universe lies 2-3o away from data

Union2 re-investigated

- SSC: <z> 0.046, $0.035<z<0.055$, $(\mathrm{l}, \mathrm{b})=(306.44,29.71)$
- YES in Union2 there seems to be an (insignificant)
"turnaround" of the dipole around the SSC

Union2 re-investigated

$0.015<z<0.035$
$0.015<z<0.035$

-2.4	-1.8	-1.2	-0.6	0.0	0.6	1.2	1.8	2.4

- SSC: <z> 0.046, $0.035<z<0.055$, ($1, \mathrm{~b})=(306.44,29.71)$
- NO it does not seem to be SNe falling towards Shapley since the data coverage in Union2 is too sparse in the corresponding bin!!

$0.035<z<0.052$

$0.045<z<0.06$

Nearby Supernova Factory Data

Nearby Supernova Factory Data

$0.015<z<0.035$
$0.015<z<0.035$
$\begin{array}{lllllllll}-1.6 & -1.2 & -0.8 & -0.4 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6\end{array}$

- No turnover in SNF data. Flow stays in the same direction at the 30 level!

$0.035<z<0.052$
$0.035<z<0.0522$ -

$0.045<z<0.06$

Gravitational Attractor Picture

Following Peebles

(1993), Munoz et al (2008)

$$
M_{\text {tot }}\left(<R_{E}\right)=(4 / 3) \pi R_{L}^{3} \Omega_{M, 0} \rho_{\text {crit }, 0}\left(1+\delta_{i}\right)
$$

Lavaux et al. (2010, ApJ)

$$
v_{p}=\frac{a f H}{4 \pi} \int \frac{\vec{y}-\vec{x}}{|\vec{y}-\vec{x}|^{3}} \delta(\vec{y}) d^{3} \vec{y} .
$$

Compute velocity field from SN data and infer attractor mass (overdensity 6) at different z positions along the LOS towards SSC

Union2 in principle consistent with an (increasingly

 unrealistic) overdensity at SSC location. BUT: no blue shifted SNe in the outer rims of the cluster in the union2 data!!

SNF data is incompatible with the SSC (attractor) scenario at the 2.3 o level!

Velocity Dipole Union2

- Overall dipole amplitude of $\boldsymbol{\sim} \mathbf{2 0 0} \mathbf{~ k m} / \mathrm{s}$ towards SSC
- Signal comes mainly from bin $0.015<z<0.035$
- Inconclusive w.r.t. bulk flow beyond SSC

Velocity Dipole SNF

- Overall dipole amplitude of $\boldsymbol{\sim} 200 \mathrm{~km} / \mathrm{s}$ towards SSC - Signal comes mainly from bin $0.045<z<0.06$
- Hints for bulk flow extension beyond SSC but not further20/21

Conclusions

- We know of a 2-3 o dipole flow in direction of

Shapley/CMB from galaxy and SN data.

- Union2 cannot prove that SSC is solely responsible for the detected bulk flow
- The signature in the SNF data also does not support such a scenario.
- The bulk flow motion seems to extend slightly beyond Shapley.

