Results from the Telescope Array Experiment

> Gordon Thomson University of Utah

Outline

- Introduction
- TA Results:
 - Spectrum
 - Composition
 - Search for anisotropy
 - Search for photon, neutrino events
- TALE, Radar projects
- Conclusions

Cosmic Rays above 10¹⁸ eV are likely of Extragalactic Origin

- What are the sources?
 - The biggest question.
- Anisotropy.
 - Both galactic and extragalactic magnetic fields get in the way:
 - (1) the highest energy events are important;
 - (2) if the **composition** is heavy, sources are very hard to see.
- Spectrum.
 - There exists an absolute energy calibration: the GZK cutoff → 5-6x10¹⁹ eV --- if protons. GZK develops in ~50 Mpc.
 - If heavy nuclei, spallation breaks them up above ~4x10¹⁹ eV, and distances < 50 Mpc. Spallation rate ~1 nucleon/Mpc.
- Composition. Protons, Fe, or what?
 - How does composition vary with energy?
 - Disagreement among experiments.
- Everything talks to composition.

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University,
 ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

U.S., Japan, Korea, Russia, Belgium

TA is a Hybrid Experiment

- TA is in Millard Co., Utah, 2 hours drive from SLC.
- SD: 507 scintillation counters, 1.2 km spacing, scintillator area= 3 sq. m., two layers.
- FD: 3 sites, each covers 120° az., 3°-31° elev.
- ~4 years of data have been collected.

TA Fluorescence Detectors

Typical Fluorescence Event

Monocular timing fit

Reconstructed Shower Profile

TA Surface Detector

- Powered by solar cells; radio readout.
- Self-calibration using single muons.
- In operation since May, 2008.

Typical surface detector event

2008/Jun/25 - 19:45:52.588670 UTC

Stereo and Hybrid Observation

- Many events are seen by several detectors.
 - FD mono has ~5° angular resolution.
 - Add SD information (hybrid reconstruction) → ~0.5° resolution.
 - Stereo FD resolution $\sim 0.5^{\circ}$
- Need stereo or hybrid for composition analysis.
- Independent operation until 2010.
- Hybrid trigger is in operation.

Cosmic Ray Spectrum

- Status: the GZK cutoff was first observed by HiRes; Auger sees it also.
- The ankle shows up clearly in both spectra.

TA Spectrum (Measured by the Surface Detector)

- 3 years of data, 10997 events.
- We use a new analysis method.
 - Must cut out SD events with bad resolution.
 → Must calculate aperture by Monte Carlo technique.
 - This is an important part of UHECR technique, and must be done accurately.
 - We use HEP methods for this purpose.

SD Monte Carlo

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use Corsika/QGSJet events (solve "thinning" problem).
 - Throw with isotropic distribution.
 - Simulate trigger, front-end electronics, DAQ.
- Write out the MC events in same format as data.
- Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.

How to Use Corsika Events

- Use 10⁻⁶ thinned CORSIKA QGSJET-II proton showers that are de-thinned in order to restore information in the tail of the shower.
- De-thinning procedure is validated by comparing results with un-thinned CORSIKA showers, obtained by running CORSIKA in parallel
- We fully simulate the SD response, including actual FADC traces

Distance from Core, [km]

Dethinning Technique

- Change each Corsika "output particle" of weight w to w particles; distribute in space and time.
- Time distribution agrees with unthinned Corsika showers.

• Fitting procedures are derived solely from the data

Counter signal, [VEM/m²]

Fitting results

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

Zenith angle

Azimuth angle

LDF χ^2/dof

Counter pulse height

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

Energy Scale

- SD and FD energy estimations disagree
- FD estimate possesses less model-dependence
- Set SD energy scale to FD energy scale using well-reconstructed events from all 3 FD detectors
- 27% renormalization.

Acceptance

SD Energy Spectrum: GZK Feature

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TA SD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.7}eV bin:

$$-N_{\text{EXPECT}} = 54.9$$

$$-$$
 N_{OBSERVE} = 28

 $PROB = \sum_{i=0}^{28} Poisson(\mu = 54.9; i) = 4.75 \times 10^{-5}$

SD Energy Spectrum: Integral Flux E_{1/2} Measurement

Fluorescence Detector (FD) Monocular Spectrum

- For FD (mono, hybrid, stereo) measurements, the aperture depends significantly on energy. → Must calculate it by Monte Carlo technique.
- This is an important part of UHECR technique, and must be done accurately.
- We use HEP methods for this purpose.

MC Method

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use Corsika/QGSJet events.
 - Throw with isotropic distribution.
 - Include atmospheric scattering.
 - Simulate trigger, front-end electronics, DAQ.
- Write out the MC events in same format as data.
- Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.
- This method works.

DATA/MC Comparisons

Zenith angle

FD and SD Energy Spectra:

Comparison with Theoretical Model (Berezinsky et al., 2012)

 Assume constant density of sources, calculate the "modification factor" due to propagation; compare with HiRes and TA data.

Composition from Xmax

- Shower longitudinal development depends on primary particle type.
- FD observes shower development directly.
- Xmax is the most efficient parameter for determining primary particle type.

TA FD Stereo Composition

- Measure x_{max} for Black Rock/Long Ridge FD stereo events
- Create simulated event set
- Apply exactly the same procedure as with the data

 This measurement is independent of HiRes and Auger.

QGSJETII

Proton

QGSJETII Proton Iron

Prediction of <Xmax>, directly from CORSIKA

Prediction of <Xmax>, Reconstructed

These rails which include acceptance and reconstruction bias can be compared with data

Xmax distribution (10¹⁸⁻²⁰eV)

Xmax dist. QGSJET-II

Xmax dist. QGSJET-II

Xmax dist. : KS Test

45

Simple Tests

There exist simple tests (not dominated by systematics) to check composition results; e.g., zenith angle comparison plots.

Search for AGN Correlations

- Auger found correlations with AGN's with (57 EeV, 3.1°,0.018). 14 events scanned + 13 event test sample appeared in Science article; 2.9σ chance probability.
- Later Auger data (71, 19, 16) show no significant correlations.
- HiRes data (13, 2, 3) show no significant correlations.
- TA data (20, 8, 5) show no significant correlations.

Search for Correlations with Local Large Scale Structure

METHOD

- The flux distribution over the sky is calculated from the actual distribution of galaxies (2MASS XSCz catalog, T. Jarrett, private communication)
- 110 000 galaxies at distances from 5 Mpc to 250 Mpc are included
- The flux from beyond 250 Mpc is taken uniform
- Proton primaries are assumed
- All interaction and redshift losses are accounted for
- Gaussian smearing is applied with the angular size treated as a free parameter. At small angles, this mimics the deflections in magnetic field and finite angular resolution.
- The predicted flux is compared to the data by the flux sampling test

Data, and Models

(smearing angle = 6°)

Results of K-S Test

Add Galactic Magnetic Field

- Two-component model: antisymmetric halo + symmetric disk field
- Fits NVSS RM data [Pshirkov et al, ICRC-2011, talk 163 (to appear in ApJ)]
- Calculate the expected flux map including deflections in GMF
- Compare to the observed distribution
- Check if the parameters of GMF can be chosen so as to make CR data compatible with the structure model

Flux Map and K-S Plot

- Compatibility with structure cannot be improved by the disk component only

 halo component is required
- Rather strong or extended halo field is needed for noticeable improvement of correlation
- The required extended halo does is compatible with the RM measurements if the standard electron density distribution is assumed

Search for Photons and Neutrinos

Photons: Use curvature of shower front.

Neutrinos:

Use old/new shower discriminant: number of muon peaks in FADC trace.

TA Low Energy Extension (TALE)

- A lot of physics was skipped in the push to observe the GZK cutoff. → Study the 10¹⁶ and 10¹⁷ eV decades with a hybrid detector.
 - End of the rigidity-dependent cutoff that starts with the knee (at $3x10^{15}$ eV).
 - The second knee
 - The galactic-extragalactic transition
- Need to observe from 3x10¹⁶ eV to 3x10²⁰ eV all in one experiment. That is TA and TALE.

TALE FD

- Add 10 telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- Operate in conjunction with the TA Middle Drum FD.
- Together cover $10^{16.5} < E < 10^{20.5} eV$

TALE Infill Array

- Add infill array (400m and 600m spacings) for hybrid and standalone observation.
- Also add counters to build out main TA SD array (1200m separation).
- 105 counters in all.

Radar Detection of Cosmic Ray Showers

- Rates at the highest energies are too low → need bigger experiments.
- Bistatic radar detection:
 - Remote sensing
 - Inexpensive

Received signal under 0 dB signal-to-noise ratio

Time (usec)

Time (µsec)

15 Time (µsec)

100% duty cycle

Chirp detection by matched filters (0db above noise)

Input 3.5 MHz/microsec "chirp"

1 MHz/microsec

filter output

3.5 MHz/microsec

filter output

Conclusions

- The Telescope Array (TA) Experiment is collecting data in the northern hemisphere.
- TA is a LARGE experiment which has excellent control of systematic uncertainties.
- SD mono, FD mono, stereo, hybrid, hybridstereo analyses are all ongoing.
- Important TA spectrum, composition, and anisotropy results are being presented. With more to come.
- TA is a discovery experiment.