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1. Introduction

A discussion of the decay of the false vacuum was began in two
pioneer papers by Coleman and, Callan and Coleman

[1] S. Coleman, Phys. Rev. D 15, 2929 (1977),
[2] C.G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).

”The fate of the false vacuum” was discussed there, namely the
unstability of a physical system in a state which is not an absolute
minimum of its energy density, and which is separated from the
minimum by an effective potential barrier. It was shown, in those
papers, that even if the state of the early Universe is too cold to
activate a ”thermal” transition (via thermal fluctuations) to the
lowest energy (i.e. ”true vacuum”) state, a quantum decay from
the false vacuum to the true vacuum may still be possible through
a barrier penetration via macroscopic quantum tunneling.



Not long ago, the decay of the false vacuum state in a
cosmological context has attracted renewed interest, especially in
view of its possible relevance in the process of tunneling among the
many vacuum states of the string landscape (a set of vacua in the
low energy approximation of string theory), see e.g.:

[3] L. M. Krauss, J. Dent, and G. D. Starkman, Int. J. Mod. Phys.
D 17, 2501 (2008),

[4] Yung-Son Piao, arXiv:0810.3654

In many models the scalar field potential driving inflation has a
multiple, low–energy minima or ”false vacuua”. Then the absolute
minimum of the energy density is the ”true vacuum”.

In my talk the attention will not be focussed on inflationary
processes and mechanisms to produce the various states in the
landscape etc., but on properties of decaying false vacuum

states from the point of view of the quantum theory of

unstable states evolving in time and decaying.



Since the work of Khalfin

[5] L. A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957)[ Sov.
Phys. JETP 6, 1053 (1958)]

it is known that for long times compared to the characteristic decay
time of an unstable state (when the decay law has an exponential
form), the survival probability of such states is no longer described
by an exponential function of time t but it decreases as t → ∞
more slowly than any exponential function of t.



Krauss and Dent analyzing a false vacuum decay

[6] L. M. Krauss, J. Dent, Phys. Rev. Lett., 100, 171301 (2008);
see also: S. Winitzki, Phys. Rev. D 77, 063508 (2008),

pointed out that in eternal inflation, even though regions of false
vacua by assumption should decay exponentially, gravitational
effects force space in a region that has not decayed yet to grow
exponentially fast. This effect causes that many false vacuum
regions can survive up to the times much later than times when
the exponential decay law holds. In the mentioned paper by Krauss
and Dent the attention was focused on the possible behavior of the
unstable false vacuum at very late times, where deviations from
the exponential decay law become to be dominant.

The aim of this talk is to discuss the late time behavior of

the energy of the false vacuum states.



2. Properties of unstable states in short

If |M〉 is an initial unstable state then the survival probability,
P(t), equals

P(t) = |a(t)|2,

where a(t) is the survival amplitude,

a(t) = 〈M|M; t〉, and a(0) = 1,

and

|M; t〉 = e−i t
~
H |M〉,

H is the total Hamiltonian of the system under considerations.

The spectrum, σ(H), of H is assumed to be bounded from below,
σ(H) = [Emin,∞) and Emin > −∞.



From basic principles of quantum theory it is known that the
amplitude a(t), and thus the decay law PM(t) of the unstable
state |M〉, are completely determined by the density of the energy
distribution function ω(E) for the system in this state

a(t) =

∫

Spec.(H)
ω(E ) e−

i
~
E t

dE . (1)

where
ω(E ) ≥ 0 and ω(E ) = 0 for E < Emin.

From this last condition and from the Paley–Wiener Theorem it
follows that there must be (see [5])

|a(t)| ≥ A e−b tq ,

for |t| → ∞. Here A > 0, b > 0 and 0 < q < 1.
This means that the decay law PM(t) of unstable states decaying
in the vacuum can not be described by an exponential function of
time t if time t is suitably long, t → ∞, and that for these lengths
of time Pφ(t) tends to zero as t → ∞ more slowly than any
exponential function of t.



The analysis of the models of the decay processes shows that

PM(t) ≃ e
−ΓM t

~ ,

(where ΓM is the decay rate of the state |M〉), to a very high
accuracy at the canonical decay times t: From t suitably later than
the initial instant t0 up to

t ≫ τM =
~

ΓM

and smaller than t = T , where T is the crossover time and
denotes the time t for which the non–exponential deviations of
a(t) begin to dominate.

In general, in the case of quasi–stationary (metastable) states it is
convenient to express a(t) in the following form

a(t) = aexp(t) + anon(t), (2)

where aexp(t) is the exponential part of a(t), that is



aexp(t) = N e−i t
~
(EM − i

2 ΓM), (3)

(EM is the energy of the system in the state |M〉 measured at the
canonical decay times, N is the normalization constant), and
anon(t) is the non–exponential part of a(t).

For times t ∼ τM :
|aexp(t)| ≫ |anon(t)|,

The crossover time T can be found by solving the following
equation,

|aexp(t)|
2 = |anon(t)|

2. (4)

The amplitude anon(t) exhibits inverse power–law behavior at the
late time region: t ≫ T .

Indeed, the integral representation (1) of a(t) means that a(t) is
the Fourier transform of the energy distribution function ω(E ).
Using this fact we can find asymptotic form of a(t) for t → ∞.
Results are rigorous.



Let us assume now that limE→Emin+ ω(E )
def
= ω0 > 0. Let

derivatives ω(k)(E ), (k = 0, 1, 2, . . . , n), be continuous in
[Emin,∞), (that is let for E > Emin all ω(k)(E ) be continuous and
all the limits limE→Emin+ ω(k)(E ) exist) and let all these ω(k)(E )
be absolutely integrable functions then

a(t) ∼
t→∞

−
i~

t
e
− i

~
Emint

n−1
∑

k=0

(−1)k
( i~

t

)k
ω
(k)
0 = anon(t),

(5)

where ω
(k)
0

def
= limE→Emin+ ω(k)(E ).

[7] K. Urbanowski, Eur. Phys. J. D, 54, (2009),



Let us now consider a more complicated form of the density ω(E ).
Namely let ω(E ) be of the form

ω(E ) = (E − Emin)
λ η(E ) ∈ L1(−∞,∞), (6)

where 0 < λ < 1 and it is assumed that η(Emin) > 0 and η(k)(E ),
(k = 0, 1, . . . , n), exist and they are continuous in [Emin,∞), and
limits limE→Emin+ η(k)(E ) exist, limE→∞ (E − Emin)

λ η(k)(E ) = 0
for all above mentioned k , then

a(t) ∼
t→∞

(−1) e−
i
~
Emint

[(

−
i~

t

)λ+1
Γ(λ+ 1) η0 (7)

+ λ
(

−
i~

t

)λ+2
Γ(λ+ 2) η

(1)
0 + . . .

]

= anon(t)



3. Instantaneous energy and instantaneous decay rate

The amplitude a(t) contains information about the decay law
PM(t) of the state |M〉, that is about the decay rate ΓM of this
state, as well as the energy EM of the system in this state. This
information can be extracted from a(t). Indeed if |M〉 is an
unstable (a quasi–stationary) state then

a(t) ∼= e−
i
~
(EM − i

2ΓM) t . (8)

So, there is

EM −
i

2
ΓM ≡ i~

∂a(t)

∂t

1

a(t)
, (9)

in the case of quasi–stationary states.

The standard interpretation and understanding of the quantum
theory and the related construction of our measuring devices are
such that detecting the energy EM and decay rate ΓM one is sure
that the amplitude a(t) has the form (8) and thus that the relation
(9) occurs.



Taking the above into account one can define the ”effective
Hamiltonian”, hM , for the one–dimensional subspace
of states H|| spanned by the normalized vector |M〉 as follows

hM
def
= i~

∂a(t)

∂t

1

a(t)
. (10)

In general, hM can depend on time t, hM ≡ hM(t). One meets this
effective Hamiltonian when one starts with the Schrödinger
Equation for the total state space H and looks for the rigorous
evolution equation for the distinguished subspace of states
H|| ⊂ H.
The equivalent expression for hM ≡ hM(t) has the following form [7]

hM(t) ≡
〈M|H|M; t〉

〈M|M; t〉

def
= EM(t) −

i

2
γM(t). (11)



Details can be found in [7] and in

[8] K. Urbanowski, Cent. Eur. J. Phys. 7, (2009),
(see also references one can find therein).

Thus, one finds the following expressions for the energy and the
decay rate of the system in the state |M〉 under considerations, to
be more precise for the instantaneous energy EM(t) and the
instantaneous decay rate, γM(t),

EM ≡ EM(t) = ℜ (hM(t)), (12)

γM ≡ γM(t) = − 2ℑ (hM(t)), (13)

where ℜ (z) and ℑ (z) denote the real and imaginary parts of z
respectively.



Using (10) and (19), (20) one can find that

EM(0) = 〈M|H|M〉, (14)

EM(t ∼ τM) ≃ EM 6= EM(0), (15)

γM(0) = 0, (16)

γM(t ∼ τM) ≃ ΓM . (17)

So, there is EM(t) = EM at the canonical decay time.

Starting from the asymptotic expressions (5) and (7) for a(t) and
using (10) after some algebra one finds for times t ≫ T that



hM(t) t→∞ ≃ Emin + (−
i~

t
) c1 + (−

i~

t
)2 c2 + . . . , (18)

where ci = c∗i , i = 1, 2, . . .; (coefficients ci depend on ω(E )).
This last relation means that

EM(t) ≃ Emin +
c2

t2
. . . , (for t ≫ T ), (19)

γM(t) ≃ 2
c1

t
+ . . . , (for t ≫ T ), (20)

These properties take place for all unstable states which survived
up to times t ≫ T .
From (19) it follows that limt→∞ EM(t) = Emin.



For the most general form (6) of the density ω(E ) (i. e. for a(t)
having the asymptotic form given by (7) ) we have

c1 = λ+ 1, c2 = (λ+ 1)
η(1)(Emin)

η(Emin)
. (21)

The energy densities ω(E ) considered in quantum mechanics and
in quantum field theory can be described by ω(E ) of the form (6),
eg. quantum field theory models correspond with λ = 1

2 .
The average energy measured at some time interval (t1, t2) (with
t1, t2 ≫ T ) equals

EM(t) =
1

t2 − t1

∫ t2

t1

EM(t) dt ≃ Emin +
c2

t1 t2
+ . . . , (22)



4. Discussion

Krauss and Dent in their paper [6] mentioned earlier made a
hypothesis that some false vacuum regions do survive well up to
the time T or later. Let E false

0 be the energy of a state
corresponding to the false vacuum measured at the canonical
decay time and E true

0 be the energy of true vacuum (i.e. the true
ground state of the system). As it is seen from the results
presented in previous Section, the problem is that the energy of
those false vacuum regions which survived up to T and much later
differs from E false

0 ,

[9] K. Urbanowski, Phys. Rev. Lett., 107, 209001 (2011),
(see also references one can find therein).



So, if one assumes that E true
0 ≡ Emin then one has for the false

vacuum state that at t ≫ T

E false
0 (t) ≃ E true

0 +
c2

t2
. . . 6= E false

0 . (23)

Similarly

γfalse0 (t) ≃ +2
c1

t
. . . (for t ≫ T ). (24)

Two last properties of the false vacuum states mean that

E false
0 (t) → E true

0 and γfalse0 (t) → 0 as t → ∞, (25)



5. Final remarks

The basic physical factor forcing the wave function |M; t〉 and thus
the amplitude a(t) to exhibit inverse power law behavior at t ≫ T

is a boundedness from below of σ(H). This means that if this
condition takes place and

∫ +∞

−∞
ω(E ) dE < ∞, (26)

then all properties of a(t), including a form of the
time–dependence at t ≫ T , are the mathematical consequence of
them both. The same applies by (10) to properties of hM(t) and
concerns the asymptotic form of hM(t) and thus of EM(t) and
γM(t) at t ≫ T .

Note that properties of a(t) and hM(t) discussed above do not
take place when σ(H) = (−∞,+∞).



◮ The late time behavior of the energy of the system in the false
vacuum state,

E false
0 (t) ≃ E true

0 +
c2

t2
. . . , for t ≫ T , (27)

is the pure quantum effect following from the basic principles
of the quantum theory.

◮ Problem: Do properties (23) – (25) of the false vacuum
states (i.e. changes in time of E false

0 (t) at t ≫ T – see (27) )
affect time variations of fundamental constants?

[10]J. K. Webb, et al., Phys. Rev. Lett., 107, 191101, 2011;
J. C. Berengut, V. V. Flambaum, arXiv:1008.3957;
J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003),
John N. Bahcall, et al., The Astrophysical Journal,
600,520, 2004.



Taking into account the above discussed late time properties of the
false vacuum and possible variations in time of fundamental
constants the following question can arise:

Are we living in the Universe with a false vacuum?

Thank you for your attention


