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Importance of type Ia SNe for dark energy science
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Cosmology with the Hubble diagram of SN-Ia

“Standardizable” candles probe the expansion history

Thermo nuclear explosions of White Dwarfs

Observables: Redshift z / Apparent relative flux

Noisy Estimates of DL(z)

DL(z) = (1 + z) c
H0

∫
dz
(

Ωm(1 + z)2 + Ωk (1 + z)2 + Ωx exp
(∫ z

0 dz ′3 1+w(z′)
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The Supernovae Legacy Survey

High-z supernovae search during 5 years (2003-2008)

0.3 < z < 1.0

Deep search in 4× 1 deg2 fields

Photometric survey

Conducted at the 3.6m CFHT (40 nights/year)

Rolling search

Discovery of ∼ 2000 SN in image comparison

Luminosity evolution (light-curve) in 4 bands (griz)

Spectroscopic follow-up

On 8m class telescope (Gemini, VLT, Keck)

Confirm identification as SN Ia

Deliver redshifts
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3 year analysis ingredients

Changes in 1 → 3 year analysis
1 Extended dataset: 71→ 252 (0.15 < z < 1) [Guy et al., 2010]

2 2 independent analysis (Ca/Fr)

3 Exhaustive estimate of systematics included in the fit
[Conley et al., 2011, Sullivan et al., 2011]

Key ingredients
1 Supernovae spectroscopy [Balland et al., 2009, Bronder et al., 2008]
2 Supernovae photometry

Method mostly unchanged [Astier et al., 2006]
Calibration strongly improved [Regnault et al., 2009]

3 Supernovae light curves models

Two fitters: Sifto [Conley et al., 2008], Salt2 [Guy et al., 2007]
Trained on high-z SN
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Photometry of SNIa in SNLS

Relative measurement: Flux ratio between SNIa to
surrounding stars

Robust to many problems

One subtlety: The galaxy subtraction

Many observations of the galaxy
without supernovae

Well controlled

Need: broadband flux of field stars

l
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The SNLS photometric calibration
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Broadband flux for field stars
Flux ratio between field stars and
primary standard

Two step process

Tertiaries ↔ Secondaries (MegaCam)
Secondaries ↔ Primary (Landolt)

Improvements arise from

Choice of BD+17 rather Vega

Directly observed by Landolt
Redder (closer in color to average
stars and SN)

Better understanding and
characterization of the instrument
photometric response.
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3 year light curves

Regularly (every 3/4 days) samples the luminosity evolution of SN-Ia in 4
photometric bands.
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Need for a model of the Supernova spectrum evolution

Interpolate between photometric
points (in wavelength and time)

Apparent luminosity at maximum
and in the same (rest-frame)
photometric band: mB

Color at maximum: C

Time stretch of the light-curve: s

Used to derive (noisy) estimates
of µ = 5 log10(dL/10pc):

µ(z ; cosmo) ≈ m∗
B − (M − αs + βC)

M, α and β are nuisance parameter in
the cosmological fit.

Two different models to estimate
the resulting uncertainty

SIFTO: Stretched spectral
sequence + color variation

SALT2: Data driven approach (∼
PCA)
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The combined Hubble diagram
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Cosmological constraints

w = −1.021+0.078
−0.079

Not much on a varying w w(a) = w0 + waz/(1 + z)
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The distance moduli covariance matrix

Exhaustive estimation of
systematic uncertainties δSk

Around 120 potential
systematics identified and
estimated

For the whole dataset

Delivered as covariance matrix
of µi (first order)

Cij =
∑
k

∂µi

∂Sk

∂µj

∂Sk
(δSk)2

https://tspace.library.utoronto.ca/snls
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Review of systematics

Combined with WMAP7 and BAO (Percival et al., 2010) in
FwCDM

Contribution to the uncertainty on w

Stat-only 5.4%

calibration 5.4%

light curve modeling 3%

Evolution of supernovae < 1%

Host-galaxy < 1%

Correction of Malmquist bias [Perrett et al., 2010] < 1%

Peculiar velocity of low-z negligible

Core collapse contamination negligible

Betoule LPNHE
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Model uncertainty

SN Redshift
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Noise well below the
“intrinsic” dispersion
of SNe-Ia

Small
redshift-dependent
differences

Not the dominant
systematic for the
SNLS analysis

Future surveys

Can reduce the sensitivity to model specifics by extending the wavelength
coverage in the infrared
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Where do calibration uncertainties come from ?
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Uncertainty on the Primary standard
SED

Estimated around .3%

But a tilt on the primary standard
color as a consistent
redshift-dependent effect on all SN

Affect directly the cosmology

Uncertainties in the calibration
transfer

Depending on the band: .3 to 1.8%

Instrument response comprehension

Passbands
Response uniformity

Different instruments involved
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How to improve the calibration

Landolt

SNLS SDSS
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Conlusion

An efficient probe for DE science

SNLS photometry represents ∼ 1500 h on a 3.6m

a ∼ 8% measurement of w when combined to CMB alone

Constraining power hindered by reducible systematics

Short term: Joint SDSS/SNLS effort

Small dedicated calibration programs
Polishing work on methods

Mid-term:

Dark Energy Survey (DES)
More efficient in red

Long term:

LSST-EUCLID: better situation by survey design (infrared)
R&D: Calibration from artificial sources

Betoule LPNHE
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Supernovae luminosity evolution

Concern: evolution with environmental parameters

Redshift-related parameters, e.g. Metallicity
The most sensitive test at this stage: Compare events at similar
redshifts as a function of their environment
Proxy for the host properties: the galaxy mass (correlates with
metallicity: bigger–older)

Introduction of the host mass as a
extra parameter

After stretch correction, SN appears
brighter in massive hosts at 4.5σ
(Sullivan, 2010)
Taken into account as an extra
parameter in the cosmo fit
Upper bound on non measurable
evolutions included in systematics
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Two fitters

Salt2

Data driven approach (PCA)

The spectral sequence is modeled as:
M(p, λ; x0, x1, c) =
x0[M0(p, λ) + x1M1(p, λ)]exp(cCL(λ))

Sifto

Spectral sequence from (Hsiao,
2007)

Stretch model
M(p, λ; s) = M(p/(s(λ)−1), λ)

Color relations
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Both fitters
Trained on SNLS + low-z
sample

Difference provide estimate of
systematics
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SNLS3: Photometric Calibration
Uncertainty Budget, Regnault et al. (2009)

g r i z

Zero Points (stat) ±0.002 ±0.002 ±0.002 ±0.005
Aperture corr. < 0.001 < 0.001 < 0.001 < 0.001

Background sub < 0.001 < 0.001 ±0.005 < 0.001
Shutter ±0.002 ±0.002 ±0.002 ±0.002
Linearity < 0.001 < 0.001 < 0.001 < 0.001

2nd order airmass corr. < 0.001 < 0.001 < 0.001 < 0.001
Grid reference colors < 0.001 < 0.001 < 0.001 < 0.001

Grid color corrs < 0.001 < 0.001 ±0.002 < 0.001
Landolt catalogs ±0.001 ±0.001 ±0.001 ±0.002

Magnitudes of BD +17 ±0.002 ±0.004 ±0.003 ±0.018
Transfer to SNe ±0.002 ±0.002 ±0.002 ±0.002

Total ±0.005 ±0.006 ±0.007 ±0.019
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MegaCam/Landolt transformations
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MegaCam/Landolt transformations
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