

24th Rencontres de Blois

Results on SM Higgs boson searches at low mass from CMS

Nicola Amapane Università di Torino and INFN

On behalf of the CMS Collaboration

Highlights from Monday's CMS Talk...

- 9 analyses contribute to low mass
- Hottest channels below 200 GeV:

 $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

SM Higgs Searches at CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

Channel	Mass range	Subch.	Res.	Ref.
$H \rightarrow \gamma \gamma$	110-150	2	I-2%	arXiv:1202.1487, HIG-12-001
$H{\rightarrow\tau\tau\rightarrow\ell\tau_{h}}/e\mu$	110-145	9	20%	arXiv.1202.4083
$H \rightarrow \tau \tau \rightarrow \mu \mu$ (VBF)	110-140	3	20%	HIG 12-007
$WH \rightarrow \ell \nu \tau \tau$	100-140	2	20%	HIG 12-006
H→bb (VH)	110-135	5	10%	arXiv:1202.4195
$H \rightarrow WW \rightarrow \ell \nu \ell \nu$	II 0 -600	5	20%	arXiv:1202.1489
$WH \rightarrow W(WW) \rightarrow 3\ell 3\nu$	I 70- 600	3	20%	HIG 11-034
$H \rightarrow ZZ \rightarrow 4\ell$	I I 0 -600	3	I-2%	arXiv:1202.1997
$H \rightarrow ZZ \rightarrow 2\ell 2q$	130-164 200-600	6	3%	arXiv:1202.1416
$H \rightarrow WW \rightarrow \ell \nu q q$	170-600			HIG 12-003
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	200-600	2	7%	arXiv:1202.3478
$H \rightarrow ZZ \rightarrow 2\ell 2\tau$	190-600	8	10- 15%	arXiv:1202.3617

High mass channels & VBF: see talks by Y. Gao and B. Jäger!

$H \rightarrow \gamma \gamma$

- Search for narrow peak over large, smoothly falling background
 - Background from $m_{\gamma\gamma}$ distribution in data; resolution is critical

Multivariate analysis (HIG-12-001):

- Primary vertex selection
 - MVA combining information on track recoil against di-photon system with conversion pointing (when available)
 - Additional per-event vertex probability MVA estimate
 - Data/MC studied with $Z \rightarrow \mu\mu$ events (removing μ s) and γ +jets (w/conversion)
- Select two photons with $p_T > m_{\gamma\gamma}/3(4)$
 - Loose preselection on shower shape and isolation; electron veto
 - Photon ID MVA to give per-object γ/π^0 discriminator with shower topology, isolation variables, N_{vtx} , η of supercluster
 - Efficiency measured on $Z \rightarrow ee$, and $Z \rightarrow \mu \mu \gamma$ for electron veto
- Multivariate energy correction for electromagnetic cluster containment; with resolution estimate
- Energy scale and MC resolution corrections from $Z \rightarrow ee$
- Classification with di-photon MVA

Di-photon MVA

- Encode all sig/bg discriminaton (except $m_{\gamma\gamma}$) in a single variable
 - Inputs: $m_{\gamma\gamma}$ -independent kinematics, per-event resolution and vertex probability, and photon ID
 - Di-photon MVA output for signal-like events validated with $Z \to ee$ events by inverting electron veto in the pre-selection

5

Use this to categorize events

$H \rightarrow \gamma \gamma$: Event Classification

- Define 4 classes of events according to di-photon MVA output
 - Mass resolution and S/B vary signicantly as a function of event class
- 5th class for events with di-jet tag (VBF

topology): s/b~1/3

6

- Background modelling from fit to data
 - Sufficient polynomial order chosen with toy studies category by category
 - Alternative using mass-sideband model

• Signal modelling from Monte Carlo with smearing and scale factors applied N. Amapane Blois, 30/5/2012

CMS Experiment at LHC, CERN Data recorded: Mon Sep 26 20:18:07 2011 CEST Run/Event: 177201 / 625786854 Lumi section: 450

$H \rightarrow \gamma \gamma$: Results

- Use $m_{\gamma\gamma}$ shape for final results
 - 95% C.L. exclusion for 110.0-111.0, 117.5-120.5, 128.5-132.0,139.0-140.0, 146.0-147.0 GeV.
- Two regions of excess: 125 GeV and 136 GeV
 - At 125 GeV, both di-jet tagged and not-di-jet-tagged categories contribute

$H \rightarrow ZZ \rightarrow 4\ell$

- High purity, excellent resolution (1-2%), robust against pile-up
 - Narrow peak over a locally flat background continuum
- Small signal : Need to preserve highest efficiencies for ID, isolation, kinematics
- Select 4 isolated leptons with small impact parameter to PV
 - |η|<2.5 (m), 2.4 (e);
 - $p_T 1,2 > 20, 10 \text{ GeV}, p_T 3,4 > 5 (\mu) \text{ or } 7 (e) \text{ GeV}$
 - 50 < m₇₁ < 120 GeV, 12 < m₇₂ < 120 GeV</p>

$H \rightarrow ZZ \rightarrow 4\ell$

• Control lepton efficiencies from data with tag-and-probe on Z (for e,µ) and J/ Ψ (for low $p_T \mu$)

- Irreducible $ZZ \rightarrow 4\ell$ continuum background estimated from MC
- Reducible Z+j, Z+bb and tt backgrounds estimated from Z + ll (same-sign) sample, with fake rates from Z + l sample

$H \rightarrow ZZ \rightarrow 4\ell$: observed events

4e Candidate

 $M_{Z1} = 92 \text{ GeV/c}^2$ $M_{Z2} = 27 \text{ GeV/c}^2$

 $M_{4\ell} = 126 \text{ GeV/c}^2$

$H \rightarrow ZZ \rightarrow 4\ell$: Results

- m_{41} shape used to extract final results
- 95% C.L. exclusion for 134-158, 180-305, 340-465 GeV
- "observed excess makes limit weaker than expected"

$H \rightarrow WW \rightarrow 2\ell 2\nu$

- Analysis discussed in next talk!
 - Results from MVA shape analysis
 5 categories: 0/1 jet (SF/OF),
 2jets (VBF)
 - Results (95% CLS)
 - Exp exclusion: 127-270 GeV
 - Obs exclusion: 129-270 GeV

Higgs mass [GeV]

- Broad "excess" below exclusion
 - But poor mass resolution (no peak)
 - How would a signal look like in this plot?
 - run pseudo- experiments with pseudo-data @ 124 GeV

Other Low Mass channels...

Combination

HIG-11-032 (arXiv.1202.1488) HIG-12-008

- 95% C.L. Expected exclusion: 114.5 543 GeV
- 95% C.L. Observed exclusion: 127.5 600 GeV

Blois, 30/5/2012 17

Summary

- 9 analyses presently contribute to low mass H results
 full 2011 dataset analyzed
- SM Higgs excluded at 95% C.L. above 127.5 GeV
- Modest excess does not allow to exclude the range between 114.4 and 127 GeV, leaving a window open for the Higgs

"More data are required to ascertain the origin of the observed excess" - HIG-12-008

The data is coming!!

Backups

HIG-11-032 (arXiv.1202.1488) & HIG-12-008

bb + $\tau\tau$ + WW

$H \rightarrow \gamma \gamma$: Analysis flow

Strategy: Process available information into quantities with straightforward physical interpretations in order to combine per-event knowledge of expected mass resolution and S/B into a single Di-photon MVA" variable

$H \rightarrow ZZ \rightarrow 4\ell$: Background Estimation

Rely on Data:

Start with $Z1 + \ell^{reco}\ell^{reco}$

Which contains would-be signal-like Z+jets, Zbb and tt

"Fake Rate Method"

Define a sample of SS-SF i.e. Z1 + $e^{\pm}e^{\pm}$, $\mu \mu$

Cross-check HF component: Define a sample with leptons at large impact $|SIP_{3D}| > 5$

Extrapolate to signal region using SIP_{3D} shapes

- ⇒ tt contribution proven negligible in signal region
- \Rightarrow Zbb/tt proven negligible for 60 < M_{Z1,2} < 120 GeV

$H\to\tau\tau$

- Analysis method:
 - Use eµ, $e\tau_h$, and $\mu\tau_h$ final states
 - μμ mode added recently [HIG-12-007]
- mass reconstructed using kinematic fit of visible products and missing E_T with likelihood constraints on decay kinematics
- $Z \rightarrow \tau \tau$ background estimated from $Z \rightarrow \mu \mu$ events in data with replaced by simulated τ
- W + jets and multijet background estimated from high transverse mass and same-sign control region
- Binned ML fit to $m_{\tau\tau}$ in 3 categories for each final state
 - di-jet VBF tagged, boosted (leading jet pT > 150 GeV), remaining 0/1 jet events
- Also: WH(ττ) [HIG-12-006]
 - Use te⁺ μ^+ τ_h^- , μ^+ μ^+ τ_h^- and c.c.

$VH \rightarrow bb$

- V kills QCD; provides trigger
 - p_T spectrum of V+jets is softer
 - boosting V and H increases S/B
 - 3 topologies (5 channels):
 - $Z \rightarrow \ell \ell, Z \rightarrow \nu \nu, W \rightarrow \ell \nu \ [\ell = e, \mu]$
- Main backgrounds
 - V+bb, ttbar, single top, VV
- Mass-dependent MVA analysis
 - Trained on simulated signal/bk
 - Rates for W/Z+jets and tt from data
 - Diboson, single t from MC
 - Cut&count on MVA output
- b-tagging

