Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EXPERIMENT

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Electron: Black Cells:Tiles, EMC

Results on SM Higgs boson searches at low mass from ATLAS.

Christos Anastopoulos On behalf of the ATLAS collaboration. Rencontres de Blois 2012

Introduction

5.25 fb⁻¹ @ 7TeV recorded during 2011.
 Luminosity uncertainty is 3.9%.
 90-95% of the data used for analysis.

Higgs Boson Production and decays

LHC 7 TeV

Production x-section

Decay BR

Overview of ATLAS Higgs searches

Overview of ATLAS low mass Higgs searches

Channel	mH range (GeV)	Int. Lumi. (fb ⁻¹)	Main Backgrounds	Reference
(W/Z)H, H→bb	110-130	4.7	W/Z+jets, top	CONF-2012- 015
Η→ττ (ll,lh,hh)	110-150	4.7	Ζ→ττ, top	CONF-2012- 014
H→WW ⁽ 米)→lvlv	110-600	4.7	WW ^{(*),} top, W/Z+jets	CONF-2012- 012
Н-→үү	110-150	4.9	γγ <i>,</i> γj	Phys. Rev. Lett. 108, 111803
H→ZZ ^(*) →4I	110-600	4.8	ZZ ^{(*),} Z+jets	Phys.Lett. B710 (2012) 383-402

(W/Z)H→bb

Search in 110 GeV≤mH≤130 GeV region.

Final states :

- ZH→llbb (background: Z+jets ,top)
- □ WH→lvbb (background: W+jets, top)
- I ZH→vvbb (background: W+jets, top)

 $\hfill \hfill \hfill$

Requirements:

- \Box Exactly two b-tagged jets: $E_T > 45$ GeV and > 25 GeV.
- □ ZH→Ilbb : reconstructed Z , MET<50GeV
- ❑ WH→lvbb: MET>25GeV, extra lepton veto, mT(I,MET)>40GeV

□ ZH→vvbb: MET>120GeV, leptons veto, track-based MET> 30GeV

Systematics :

■ b-tagging efficiency uncertainty (~10-20% on signal), jet energy scale (~5-10%) and background normalization (~5%) Christos Anastopoulos

(W/Z)H→bb

□ Expected 95% CL upper limit 2.6-5.1 x σ_{SM} between 110 - 130 GeV
 □ Observed 95% CL upper limit follows expectation
 □ ZH→vvbb is the most sensitive channel and WH→lvbb follows

- Search in 100 GeV≤mH≤150 GeV region
- Three final states:
 - □ H→ττ→ll+4ν
 - □ H→ττ→lh+3ν
 - □ H→ττ→hh+vv
 - Categorized in 12 sub-channels, depending on lepton flavor, number of jets, MET.
- \square m_{tt} is the final discriminant:
 - Collinear approximation for II hh.
 - Ih : :Missing Mass Calculator → requires that mutual orientations of the neutrinos and other decay products are consistent with the mass and kinematics of a τ lepton

Η→ττ

Most sensitive sub-channels:
 II :2-jet VBF
 Ih :2-jet VBF
 hh :1-jet

□ Expected limit between $3.2-7.9 \times \sigma_{SM}$ □ Most sensitive at ~126 GeV

Observed limit ~2.5-11.9×σ_{sm}

$H \rightarrow WW \rightarrow |v|v$

- Search in the region 110 600 GeV
 - \Box 3 sub-channels (ee,eµ,µµ) \otimes (0j,1j,2j) = 9 channels
 - □ H+2 jets includes VBF cuts
- Main Backgrounds: WW, top and W/Z+jets
- Optimized in 3 m_H bins: <200, 200-300 and >300 GeV

Requirement	Background
Two isolated opposite-sign leptons (p _T >20,15 GeV)	W+jets, QCD
MET > 45 (25) GeV 2e , 2μ (eμ) Z veto m _{ll} -m _{zPDG} < 15 GeV .	Drell-Yan/Z+jets
Jet Multiplicity, b-jet veto	top
Topological cuts (m _{II} , Δφ _{II}).	WW
Additional jet-independent Requirements (pT _{II} ,pT _{tot})	DY/Z

Multiplicity of jets with Pt> 25 GeV, after the cut on MET.

$H \rightarrow WW \rightarrow |v|v$

- Most sensitive channel for 130<mH<190 GeV.
- Cut and count approach.
 - Expected exclusion: 127 234 GeV.
 - Observed exclusion: 130 260 GeV.
 - No excess over the expected background observed.

Η→γγ

- Most important channel for low mass. Excellent mass resolution.
- Main backgrounds:
 -] irreducible γγ (30 pb)
 - reducible γj (200 nb);
 - 🔲 reducible jj (500 μb).

Powerful /jet separation is crucial.
 Fine granularity in strips to reject π⁰.
 EM shower shape to reject fake photons from jets → O(8000) jet rejection, for 85% photon efficiency.

$H \rightarrow \gamma \gamma$

Requires excellent energy resolution.

- Using the longitudinal (and lateral) segmentation of the calorimeter to measure photon direction.
- Two isolated photons $E_T(1) > 40$ GeV, $E_T(2) > 25$ GeV
- Categorize events to optimize signal/background based on:
 - Detector region.
 - conversion status
 - \Box and P_{Tt}

Category	СВ	FWHM	S/B
Unconverted central, low P _{Tt}	1.4	3.4	0.05
Unconverted central, high P_{Tt}	1.4	3.3	0.11
Unconverted rest, low P_{Tt}	1.7	4.0	0.02
Unconverted rest, high P_{Tt}	1.6	3.9	0.04
Converted central, low P_{Tt}	1.6	3.9	0.03
Converted central, high P _{Tt}	1.5	3.6	0.08
Converted rest, low P _{Tt}	2.0	4.7	0.01
Converted rest, high P _{Tt}	1.9	4.5	0.03
Converted transition	2.3	5.9	0.01
All categories	1.7	4.1	0.02

$H \rightarrow \gamma \gamma$

- Background model exponential function
- Signal model parametrized by Crystal Ball + Gaussian
- Expected limit ~1.5-2.5 x σSM between 110 and 150 GeV
- Observed exclusion 113-115 GeV, 134.5-136 GeV
- Largest excess observed at 126.5 GeV
 - Local significance: 2.8σ
 - Global significance: 1.5σ for m_H =110-150
 GeV

Christos Anastopoulos

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

- The "golden" channel : clean but small rates.
- Very sensitive to lepton performance!
- Two same-flavour/opposite-charged pairs of isolated leptons :
 - 2 P_t > 20 GeV
 - 2 P_t > 7 GeV
- One/both compatible with Z boson mass
 - $\square |m_{12} m_{ZPDG}| < 15 \text{ GeV}.$
 - □ $m_{min} < m_{34} < 115$ GeV, where m_{min} is a function of the reconstructed m_{4l} . Example: $m_{min} = 15$ GeV for $m_{4l} = 120$ GeV.
- Backgrounds:
 - Irreducible SM ZZ^(*)
 - Reducible Z+jets and ttbar.

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

- Normalize ZZ production to MC expectation :
 - Including both $qq/gq \rightarrow ZZ$ and $gg \rightarrow ZZ$.
 - Overall theory uncertainty ~15%.
- Normalize top production to MC expectation :
 - Verified in eµ control region.
 - Theory uncertainty 10%.
- Normalize Z+Jets production using control regions :
 - □ $Z(\rightarrow II) + \mu\mu/ee(\rightarrow no isolation/impact parameter requirements).$
 - Separate different components (heavy flavor, fakes, electroweak).
 - Extrapolate to signal region
 - Uncertainties 40 45%.

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

- Observed 71 events :
 - **□** 24 4μ
 - 🖵 30 2e2µ
 - 🖵 17 4e
- Expected 62 ± 9 events:
 - \Box 18.6 ± 2.8 4 μ
 - 29.7 ± 4.5 2e2µ and
 - 🖵 13.4 ± 2.0 4e
- The observed events near m4l=125 GeV are:
 - □ Two 2e2µ (124.3 GeV, 123.6 GeV)
 - □ One 4µ 124.6GeV

100 GeV <M₄₁ < 180 GeV

Expected exclusion : 137-157, 184-400 GeV.
 Observed exclusion : 134-156, 182-233, 256-265, 268-415 GeV.
 Largest excesses at : 244, 125 and 500 GeV.
 Local significance : 2.2, 2.1 and 2.1σ
 expected : 3.0, 1.3 and 1.5σ.

After including the look-else-where effect non of these is significant.

Overview of searches

Signal strength ATLAS Preliminary 2011 Data 2.5 - Best fit _dt = 4.6-4.9 fb 2 -2 ln λ(μ) < 1</p> 1.5 s = 7 TeV0.5 0 -0.5 -1 -1.5110 115 120 125 130 135 140 m_u [GeV]

The observed exclusion at the 95% CL extends from :

- 🖵 110.0 GeV to 117.5 GeV
- 118.5 GeV to 122.5 GeV and
- 129 GeV to 539 GeV ranges.
- Only a small gap of ~7 GeV not excluded.
- 2012 could be exciting!

Christos Anastopoulos

BACKUP