

Unterstützt von / Supported by

Stiftung/Foundation

Summary of non-SM Higgs boson searches at the LHC

Will Davey (on behalf of the ATLAS and CMS collaborations)

Outline

Model	Channel	ATLAS	fb⁻¹	CMS	fb⁻¹
	h/H/A→ττ	ATLAS-CONF-2011-132	1.06	arXiv:1202.4083	4.6
2HDM (MSSM)	H⁺→τν	arXiv:1204.2760	4.6	<u>CMS-HIG-11-019</u>	2
	H⁺→cs	ATLAS-CONF-2011-094	0.04		
NMSSM	aı→µµ	ATLAS-CONF-2011-020	0.04	<u>CMS-HIG-12-004</u>	1.3
Fermiophobic	h→γγ	arXiv:1205.0701	4.9	CMS-HIG-12-002	4.8
Doubly Charged	Φ ^{±±} →I [±] I [±]	arxiv:1201.1091	١.6	<u>CMS-HIG-12-005</u>	4.6

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11029TWiki

2 Higgs Doublet Models (MSSM)

- 5 Higgs bosons: **h**, **H**, **A**, **H**[±]
- Higgs sector completely defined at tree level by 2 parameters: m_A, tanβ
- In MSSM couplings to down-type fermions can be enhanced (bquark and tau-lepton modes dominant) while vector couplings suppressed
- Depending on tanβ, h or H are nearly mass degenerate with A:
 one light and one heavy neutral Higgs signal

Neutral MSSM Higgs boson coupling strengths

Higgs Boson	f_u	f_d	W/Z
h	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$	$\sin(lpha-eta)$
H	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$	$\cos(lpha-eta)$
A	1/ aneta	aneta	-

w.r.t SM couplings...

Neutral MSSM Higgs bosons

- Production modes:
 - gluon-fusion
 - b-quark associated
- Decay modes:
 - bb (~90%) (huge bkg)
 - тт **(~I0%)**
- $h/H/A \rightarrow \tau\tau$:
 - had-had (44%) (ATLAS Ifb⁻¹)
 - Iep-had (46%) (ATLAS Ifb⁻¹+CMS 4.7fb⁻¹)
 - lep-lep (10%) (ATLAS Ifb⁻¹+CMS 4.7fb⁻¹)

Gluon Fusion

Selection

<u>Th + Th</u>

- At least 2 τ_h
- No electrons or muons
- q(τ₁).q(τ₂)<0
- EtMiss>25 GeV

<u>e/μ + τ_h</u>

- I electron or muon
- Ι Τ_h
- $q(e/\mu).q(\tau_h) < 0$
- Suppression of W+jets and ttbar using kinematics

<u>e + μ</u>

- I electron and I muon
- q(e).q(µ)<0
- Suppression of top-quark and di-boson using kinematics

Event Categorisation (based on presence of b-jets) (CMS only)

b-tagged: at least one b-tagged jet found **b-vetoed:** no b-tagged jets found

Limits

- Limits extracted from mass distributions
- 2011 results extend much further than 2010!

Model Indep. Limit (ATLAS)

Charged Higgs Bosons

- Production:
 - m_{H±}<m_t: top-quark decay
 - m_{H±}>m_t: gb→tH[±] (important, but requires more data!)
- Decay modes:
 - $\tan\beta>3$: $H^{\pm} \rightarrow \tau \nu$ dominates
 - $tan\beta < I: H^{\pm} \rightarrow cs$ significant BR
- Channels: $t\bar{t} \rightarrow b\bar{b}H^{\pm}W^{\mp} \rightarrow b\bar{b}(\tau_{\ell}3\nu)(q\bar{q}')$ (lepton+jets) (ATLAS) $t\bar{t} \rightarrow b\bar{b}H^{\pm}W^{\mp} \rightarrow b\bar{b}(\tau_{h}2\nu)(\ell\nu)$ (tau+lepton) (ATLAS+CMS) $t\bar{t} \rightarrow b\bar{b}H^{\pm}W^{\mp} \rightarrow b\bar{b}(\tau_{h}2\nu)(q\bar{q}')$ (tau+jets) (ATLAS+CMS) $t\bar{t} \rightarrow b\bar{b}H^{\pm}W^{\mp} \rightarrow b\bar{b}(\tau_{\ell}3\nu)(\ell\nu)$ (lep+lep) (CMS+ATLAS) $t\bar{t} \rightarrow b\bar{b}H^{\pm}W^{\mp} \rightarrow b\bar{b}(c\bar{s})(\ell\nu)$ (see backup...) (ATLAS)

Selection

lepton+jets

- I electron or muon
- no taus
- at least 4 jets (2 b-tagged)
- large EtMiss
- correctly reconstructed hadronic top decay
- kinematic selection to reduce SM top background

tau+lepton

- I electron or muon
- Ι Τ_h
- $q(e/\mu).q(\tau_h) < 0$
- at least 2 jets (\geq I b-tagged)
- Σ_{PT} > 100 GeV

tau+jets

- at least 4 jets (\geq I b-tagged)
- Ι τ_h
- no electrons or muons
- large EtMiss
- correctly reconstructed hadronic top decay

 $m_{\rm T}$ [GeV]

Charged Higgs Limits

- Limits on BR(t \rightarrow bH[±]) extracted from the primary discriminating variable in each channel (eg. m_T, EtMiss...) assuming Br(H[±] \rightarrow TV)=I
- Limit I-5% for m_{H±}<160 GeV (Tevatron limit I5-20%)

Charged MSSM Higgs Limits

Limits on a charged MSSM Higgs bosons (m_h-max scenario)

NMSSM

- NMSSM: introduces a singlet scalar field to solve µ problem
 - 3 CP-even scalars (h₁,h₂,h₃)
 - 2 CP-odd scalars (**a**₁,a₂)
 - 2 Charged (H⁺,H⁻)
- a₁ can be **very light**: m_{a1}<2m_B

Analysis

- Search for narrow resonance in di-muon invariant mass distribution between 5.5 and I4 GeV (not including Υ region)
- Require opposite-sign isolated di-muons
- Pick best di-muon comb. using vertex info
- Set limits by fitting to mass spectrum

Doubly Charged Higgs

- Minimal type II neutrino see-saw model has one Higgs triplet, Φ
- Contains Φ^{±±}
- Observation of Φ^{±±} would make type II see-saw most promising framework for neutrino mass generation.

Assumptions:

- $\Phi^{\pm\pm}$ and Φ^{\pm} degenerate in mass
- $\Phi^{\pm\pm}$ → WW suppressed

No other assumptions on $\Phi^{\pm\pm}$ branching fractions.

Construct benchmark models with different leptonic branching fractions

Branching fractions

Benchmark point	ee	eμ	eτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	0.50	0	0	0.125	0.25	0.125
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

Analysis (CMS)

Selection

- At least 2 leptons
- Discard pairs at low mass or near Z peak
- Large Σp_T
- Same-sign leptons not back-to-back
- Moderate EtMiss (tau channels)
 - Analyse both 3 and 4-lepton final states with:
 - $\Phi^{\pm\pm} \rightarrow ee, e\mu, \mu\mu, e\tau, \mu\tau, \tau\tau$
 - Limits extracted by counting events in mass window
 - Background in light-lepton channels estimated from mass side-band fit
 - Background in tau channels estimated using 2D-sideband, defined with tauID and mass (3τ) or Σ_{PT} (4τ)

CMS Preliminary $\sqrt{s} = 7$ TeV, $\int \mathcal{L}$ =4.6 fb⁻¹

Doubly Charged Higgs Limits

Fermiophobic Higgs

- Suppressed Higgs couplings to fermions in 2HDM and Higgs triplet models
- Here: simple benchmark model (LEP)
 - no fermion-Higgs couplings
 - SM boson-Higgs couplings
- Decays to $\underline{\mathbf{YY}}$, WW, ZZ, ZY
- Larger σxBR than SM for light Higgs
- higher Higgs pT

Fermiophobic Higgs Limits

Selection

- 2 isolated photons
- Categorise events for best sensitivity

Limits extracted from fit to di-photon mass sepctrum

Event Categorisation

- CMS:
 - dijet-tagged (VBF production)
 - lepton-tagged (VH production)
 - inclusive (not tagged)
- ATLAS:
 - 9 categ. using p_{Tt} , η , (un)converted γ s

16

Summary

- Charged and neutral MSSM Higgs bosons ruled out over large regions of parameter space
- Doubly charged Higgs boson ruled out below ~400 GeV
- Still lots of parameter-space left at high-mass
- Fingers crossed we'll find something, so stay tuned!

Backup

Neutral MSSM Higgs Boson Searches

Limits

- Limits extracted from mass distribution
- 2011 results extend much further than 2010!

2010 Limit

ATLAS Summary Tables

MC Contributions (m_A =120 GeV, tan β =20)

	Data	Total MC bkg	W+jets	Di-boson	tī+	$Z/\gamma^* \rightarrow$	$Z/\gamma^* \rightarrow$	A/H/h signal
		(w/o QCD)			single-top	ee, µµ	$ au^+ au^-$	
еμ	2472	2496±27	30±15	109±5	100 ± 2	40±4	2217±22	155±6
$e au_{had}$	626	775±40	188±31	4.1±0.5	33 ± 3	64±5	486±24	41±4
μau_{had}	1287	1378±43	239±33	5.4 ± 0.6	51±4	105±7	978±26	75±5
$ au_{had} au_{had}$	245	76± 7	25±5	1.4±0.3	2.0 ± 0.9	-	48±5	19±1

Event Totals

Final state	Exp. Background	Data
еµ	$(2.6 \pm 0.2) \times 10^3$	2472
ℓau_{had}	$(2.1 \pm 0.4) \times 10^3$	1913
$ au_{had} au_{had}$	233 +44 -28	245
Sum	$(4.9 \pm 0.6) \times 10^3$	4630

Systematic Uncertainties (%)

	W+jets	Di-boson	tī+	$Z/\gamma^* \rightarrow$	$Z/\gamma^* \rightarrow$	Signal
			single-top	<i>ее, µµ</i>	$ au^+ au^-$	
$\sigma_{\it inclusive}$	-/-/5	7	10	5/5/-	5	14/14/16
Acceptance	-/-/20	4/2/7	3/2/9	2/14/-	5/14/14	5/7/9
e efficiency	-/-/0.8	4/3.1/0.5	4/3.6/0.3	4/3.1/-	4/3.0/0.5	4/3.6/0.1
μ efficiency	-/-/0.3	2/1.2/0.4	2/1.1/0.0	2/1.3/-	2/1.8/0.4	2/1.0/0.1
τ efficiency and fake rate	-/-/21	-/9.1/15	-/9.1/13	-/48/-	-/9.1/15	-/9.1/15
Energy scales and resolution	-/-/ ⁺³⁴	$2/_{-9}^{+19}/_{-12}^{+26}$	6/+5/12	$1/_{-25}^{+39}/-$	$1/11/_{-23}^{+63}$	$1/_{-23}^{+30}/_{-8}^{+9}$
Luminosity	-/-/3.7	3.7	3.7	3.7/3.7/-	3.7	3.7
Total uncertainty	-/-/ ⁺⁴⁵	$10/_{-16}^{+23}/_{-22}^{+32}$	13/15/23	8/+64/-	9/21/+67	$16/_{-30}^{+35}/_{-25}^{+26}$

ATLAS Model Indep. Limits

MSSM A/H/h \rightarrow TT \rightarrow eµ (ATLAS)

Selection

- Trigger: e(20) <u>or</u> mu(18)
- Offline: I e(22) and I mu(10) or I e(15) and Imu(20) (isolated)
- q(e).q(mu) < 0
- ΣpT(e,mu,EtMiss) < 120 GeV
- Δφ(e,mu)>2.0

• Use effective mass as final discriminator:

 $m_{\tau\tau}^{\text{effective}} = \sqrt{(p_{\tau^+} + p_{\tau^-} + p_{\text{miss}})^2},$

- Major Backgrounds:
 - $Z/\gamma \rightarrow \tau \tau$ (embedding)
 - Multijet (2D-sideband: lepton isolation, charge product)

MSSM A/H/h \rightarrow TT \rightarrow Ih (ATLAS)

- Trigger: e(20) <u>or</u> mu(18)
- Offline: I e(25) or I mu(20) (isolated)
- I tau(20)
- No additional leptons
- q(l).q(tau) < 0
- EtMiss > 20 GeV
- m_T(I,EtMiss) < 30 GeV
 - Use MMC mass (likelihood estimated mass) as final discriminator (see backup slide)
 - Major Backgrounds:
 - $Z/\gamma \rightarrow \tau \tau$ (embedding)
 - Multijet + W+jets (OS-SS method):

$$n_{\rm OS}^{Bkg} = n_{\rm SS}^{Bkg} + n_{\rm OS-SS}^W + n_{\rm OS-SS}^Z + n_{\rm OS-SS}^{\rm other},$$

MSSM A/H/h \rightarrow TT \rightarrow hh (ATLAS)

- Trigger: di-tau (29/20)
- Offline: 2 taus (45/30)
- q(taul).q(tau2) < 0
- No leptons
- EtMiss > 25 GeV

- Use 'visible mass' as final discriminator
- Major Backgrounds:
 - $Z/\gamma \rightarrow \tau \tau$ (MC, with embedding check)
 - Multijet (2D-sideband: tau ID, charge product)

CMS Summary Tables

e-had $m_A=120$ GeV, $tan\beta=10$

	MSSM				
Process	Non b-Tag	b-Tag			
$Z \rightarrow \tau \tau$	14259 ± 1037	135 ± 9			
Multijets	6404 ± 301	100 ± 7			
W+jets	5432 ± 377	39 ± 3			
$Z \rightarrow ll$	6146 ± 502	28 ± 4			
tī	47 ± 7	75 ± 11			
Dibosons	105 ± 22	1 ± 1			
Total Background	32392 ± 1249	378 ± 17			
$H \rightarrow \tau \tau$	279 ± 29	26 ± 4			
Data	32051	391			

mu-had $m_A=120$ GeV, $tan\beta=10$

	MSSM				
Process	Non b-Tag	b-Tag			
$Z \rightarrow \tau \tau$	29795 ± 2114	259 ± 18			
Multijets	6387 ± 115	160 ± 9			
W+jets	9563 ± 628	110 ± 9			
$Z \rightarrow ll$	924 ± 115	3 ± 1			
tī	101 ± 15	145 ± 20			
Dibosons	217 ± 46	5 ± 2			
Total Background	46987 ± 2211	681 ± 30			
$H \rightarrow \tau \tau$	502 ± 52	45 ± 6			
Data	47178	680			

e-mu n	n _A =120	GeV, tanβ=	=10
		MSSM	

	M55	M
Process	Non b-Tag	b-Tag
$Z \rightarrow \tau \tau$	11718 ± 797	112 ± 11
Multijet and W+jets	474 ± 147	15 ± 5
tī	161 ± 15	289 ± 35
Dibosons	527 ± 84	55 ± 10
Total Background	12881 ± 815	471 ± 38
$H \rightarrow \tau \tau$	161 ± 10	17 ± 1.6
Data	12761	468

MSSM Higgs		Expe				
$m_{\rm A}$ [GeV]	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Obs. $tan \beta$ limit
90	5.19	7.01	8.37	10.6	12.8	12.2
100	6.49	7.45	8.78	10.8	13.4	11.8
120	4.50	6.47	8.09	9.89	12.0	9.84
130	5.37	6.71	7.85	9.69	11.5	9.03
140	5.62	6.63	7.90	9.69	11.6	8.03
160	5.57	6.99	8.51	10.4	12.5	7.11
180	6.75	8.14	9.53	11.3	13.8	7.50
200	7.84	9.12	10.5	12.8	15.0	8.46
250	10.3	12.3	13.9	16.8	19.4	13.8
300	13.5	15.7	18.4	21.4	24.5	20.9
350	17.7	20.1	23.0	26.9	31.1	29.1
400	21.9	24.3	27.9	32.4	37.3	37.3
450	25.0	29.2	33.3	38.8	44.7	45.2
500	30.3	35.7	40.5	47.1	55.0	51.9

MSSM A/H/h \rightarrow TT \rightarrow eµ (CMS)

Selection

- Trigger: e-mu
- Offline: I electron and I muon (20/10) (isolated)
- q(e).q(mu) < 0
- At most I jet(30)
- b-tagging categories:
 - b-tagged: \geq | b-tag(20)
 - b-vetoed: 0 b-tag(20)
 - Use maximum likelihood mass as final discriminator
 - Major Backgrounds:
 - $Z/\gamma \rightarrow \tau \tau$ (embedding)
 - Multijet+Wjets (lepton isolation fake-factors)

 $m_{\tau\tau}$ [GeV]

$MSSM A/H/h \rightarrow \tau \tau \rightarrow lh (CMS)$

- Trigger: e-tau or mu-tau
- Offline: I e(20) or I mu(17) (isolated)
- I tau(20)
- No additional leptons
- q(l).q(tau) < 0
- pζ 0.5pζ^{vis} > -20 GeV (see backup)

- Use MMC mass (likelihood estimated mass) as final discriminator (see backup slide)
- Major Backgrounds:
 - $Z/\gamma \rightarrow \tau \tau$ (embedding)
 - Multijet (SS control region)
 - W+jet (high m_T control region)

Charged Higgs Boson Searches

ATLAS Summary Tables

Sample	Event yield (lepton+jets)
tī	840 ± 20 ± 150
Single top quark	$28 \pm 2^{+8}_{-6}$
W+jets	$14 \pm 3 \stackrel{+6}{-3}$
Z+jets	$2.1 \pm 0.7 \stackrel{+1.2}{_{-0.4}}$
Diboson	$0.5 \pm 0.1 \pm 0.2$
Misidentified lep	ptons 55 $\pm 10 \pm 20$
\sum SM	$940 \pm 22 \pm 150$
Data	933
$t \rightarrow bH^+$ (130 G	eV) 120 ± 4 ± 25
Signal+backgrou	und 990 $\pm 21 \pm 140$
Sample	Event yield (τ +lepton)
	$\tau + e \qquad \tau + \mu$
True τ	$430 \pm 14 \pm 59$ $570 \pm 15 \pm 75$
Misidentified jet $\rightarrow \tau$	$510 \pm 23 \pm 86$ $660 \pm 26 \pm 110$
Misidentified $e \rightarrow \tau$	$33 \pm 4 \pm 5$ $34 \pm 4 \pm 6$
Misidentified leptons	$39 \pm 10 \pm 20$ $90 \pm 10 \pm 34$
\sum SM	$1010 \pm 30 \pm 110$ $1360 \pm 30 \pm 140$
Data	880 1219
$t \rightarrow bH^+ (130 \text{ GeV})$	$220 \pm 6 \pm 29$ $310 \pm 7 \pm 39$
Signal+background	$1160 \pm 30 \pm 100 1570 \pm 30 \pm 130$
Sample	Event yield (τ +jets)
True τ (embeddin	ig method) $210 \pm 10 \pm 44$
Misidentified jet-	$\rightarrow \tau$ 36 ± 6 ± 10
Misidentified $e \rightarrow$	τ 3 ± 1 ± 1
Multi-jet processe	es $74 \pm 3 \pm 47$
$\sum SM$	$330 \pm 12 \pm 65$
Data	355
$t \rightarrow bH^+$ (130 Ge	$220 \pm 6 \pm 56$
Signal+backgrour	nd $540 \pm 13 \pm 85$

Source of uncertainty	Normalisation uncertainty	Shape uncertainty
lepton+jets: lepton misidentification		
Choice of control region	6%	-
Z mass window	4%	-
Jet energy scale	16%	-
Jet energy resolution	7%	-
Sample composition	31%	-
τ +lepton: jet $\rightarrow \tau$ misidentification		
Statistics in control region	2%	-
Jet composition	11%	-
Object-related systematics	23%	3%
τ +lepton: $e \rightarrow \tau$ misidentification		
Misidentification probability	20%	-
τ +lepton: lepton misidentification		
Choice of control region	4%	-
Z mass window	5%	-
Jet energy scale	14%	-
Jet energy resolution	4%	-
Sample composition	39%	-
τ +jets: true τ		
Embedding parameters	6%	3%
Muon isolation	7%	2%
Parameters in normalisation	16%	-
au identification	5%	-
τ energy scale	6%	1%
τ +jets: jet $\rightarrow \tau$ misidentification		
Statistics in control region	2%	-
Jet composition	12%	-
Purity in control region	6%	1%
Object-related systematics	21%	2%
τ +jets: e $\rightarrow \tau$ misidentification		
Misidentification probability	22%	-
τ +jets: multi-jet estimate		
Fit-related uncertainties	32%	-
$E_{\rm T}^{\rm miss}$ -shape in control region	16%	-

H[±], lepton+jets (ATLAS)

 $N_m^T = \frac{p_m}{p_r - p_m} (p_r N^L - N^T).$

- Trigger: e(20-22) <u>or</u> mu(18)
- Offline: I e(25) OR I mu(20) (isolated)
- No additional leptons or taus
- \geq 4 jets(20), 2 b-tagged
- if $|\Delta \phi(I, EtMiss)| \ge \pi/6$: EtMiss > 40 GeV
- else: $EtMiss|sin\Delta \phi| > 20 \text{ GeV}$
- Reconstruct hadronic top-decay (χ^2 >5)
- $\cos\theta_1 < -0.6$, m_T<60 GeV (defs. on next slide)
 - Reconstruct Hadronic top decay by picking combination of jets which minimise:

$$\chi^{2} = \frac{(m_{jjb} - m_{top})^{2}}{\sigma_{top}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\sigma_{W}^{2}},$$

- Extract limit from transverse Higgs mass dist.
- Major Backgrounds:
 - **Misidentified leptons** (loose lepton control region)
 - p_r ZII tag and probe
 - pm low EtMiss CR
 - **ttbar** (normalise in $-0.2 < \cos\theta_1 < 1$)

H[±], lepton+jets (ATLAS)

- Discriminating variables:
 - Invariant mass of b-jet and lepton

$$\cos \theta_l^* = \frac{2m_{bl}^2}{m_{top}^2 - m_W^2} - 1 \simeq \frac{4 p^b \cdot p^l}{m_{top}^2 - m_W^2} - 1.$$

• Transverse Higgs mass

$$(m_{\rm T}^{H})^2 = \left(\sqrt{m_{\rm top}^2 + (\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^b + \vec{p_{\rm T}}^{\rm miss})^2} - p_{\rm T}^b\right)^2 - \left(\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^{\rm miss}\right)^2.$$

• Transverse W mass

$$m_{\rm T}^W = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss}(1-\cos\phi_{l,{
m miss}})}.$$

H[±], tau+lepton (ATLAS)

- Trigger: e(20-22) <u>or</u> mu(18)
- Offline: I e(25) OR I mu(20) (isolated)
- No additional leptons
- I tau(20)
- q(l).q(tau)<0
- ≥ 2 jets(20), ≥ 1 b-tagged
- Σρτ>100 GeV
 - Extract limit from EtMiss dist.
 - Major Backgrounds:
 - Misidentified leptons (same as lepton+jets channel)
 - Misidentified-taus: (MC without Tau ID scaled by mis-ID measured in Zee or Wmunu control regions)

Sample	Event yield (τ +lepton)				
	$\tau + e$	$\tau + \mu$			
True τ	$430 \pm 14 \pm 59$	$570 \pm 15 \pm 75$			
Misidentified jet $\rightarrow \tau$	$510 \pm 23 \pm 86$	$660 \pm 26 \pm 110$			
Misidentified $e \rightarrow \tau$	$33 \pm 4 \pm 5$	$34 \pm 4 \pm 6$			
Misidentified leptons	$39 \pm 10 \pm 20$	$90 \pm 10 \pm 34$			
$\sum SM$	$1010 \pm 30 \pm 110$	$1360\pm30\pm140$			
Data	880	1219			
$t \rightarrow bH^+ (130 \text{ GeV})$	$220 \pm 6 \pm 29$	$310 \pm 7 \pm 39$			
Signal+background	$1160 \pm 30 \pm 100$	$1570\pm30\pm130$			

H[±], tau+jets (ATLAS)

- Trigger: tau(29)+EtMiss(35)
- Offline: I tau(40)
- No leptons
- \geq 4 jets(20), \geq 1 b-tagged
- EtMiss > 65 GeV
- EtMiss / $0.5\sqrt{\Sigma_{PT}} > 13 \text{ GeV}^{1/2}$
- m_{jjb} [120,240] (highest p⊤ jjb comb)
 - Extract limit from transverse Higgs mass dist. $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1 - \cos\phi_{\tau,{\rm miss}})},$
 - Major Backgrounds:
 - Mulitjet: (template fit of EtMiss)
 - Multijet CR: Fail Tau ID, no b-jet
 - Misidentified-taus: (as in tau+lep)
 - **Real-taus:** (ttbar embedding)

H[±], di-lepton (ATLAS, Ifb⁻¹)

- Trigger: e(20) <u>or</u> mu(18)
- Offline: exactly 2 leptons (e(25), µ(20))
- ≥2 jets(20), 2 b-tagged
- ee or μμ:
 - m_{II} >15 GeV and $|m_{II}-m_Z|$ >10 GeV
 - EtMiss > 40 GeV
- eµ: ΣE_T(leptons,jets)>130 GeV
- m_{T2} converged
- $\cos\theta_1 < -0.6$ (H⁺ side)
 - Select correct I-b pairing:
 - I. Eliminate bad pairs with $\cos\theta_1 > 1$
 - 2. Minimise $\Delta R(l,b)_1 + \Delta R(l,b)_2$
 - Extract limit from transverse higgs mass dist.
 - Major Backgrounds:
 - Misidentified leptons (same as lepton +jets)
 - **ttbar** (normalise in $-0.4 < \cos\theta_1 < 1$)

$H^{\pm} \rightarrow cs$ (ATLAS)

- $H \rightarrow cs$ dominates for $tan\beta < I$
- Require large EtMiss and m_T to suppress multijet background
- Kinematic fit with W and top mass constraints to find best H[±] candidate
- Set limits on BR(t→H[±]b) assuming BR(H[±]→cs)=100%

CMS Event Summary Tables

Source	$N_{ev}^{ au_h+jets}\pm$ stat. \pm syst.
HH+HW, $m_{H^{\pm}} = 120 \text{ GeV/c}^2$, BR $(t \to H^+ b)=0.05$	$49\pm4\pm8$
multi-jets (data-driven)	$27\pm2\pm1$
EWK+ $t\bar{t} \tau$ (data-driven)	$78\pm3\pm12$
EWK+ $t\bar{t} \tau$ fakes (simulation)	$6\pm4\pm1.4$
$Z/\gamma^* ightarrow au au$ (simulation)	$6.5\pm2.0\pm1.2$
$WW \rightarrow \tau \nu_{\tau} \tau \nu_{\tau}$ (simulation)	$0.34 \pm 0.22 \pm 0.05$
Total expected background	$118\pm5\pm12$
Data	130

Source	$N_{\rm ev}^{e au_h} \pm { m stat.} \pm { m syst.}$	$N_{\rm ev}^{\mu au_h} \pm { m stat.} \pm { m syst.}$
HH+HW, m_{H^+} =120 GeV/ c^2 , BR($t \to H^+ b$)=0.05	$49\pm3\pm8$	$86 \pm 4 \pm 13$
au fakes	$54\pm 6\pm 8$	$89\pm9\pm11$
$tar{t} ightarrow WbWb ightarrow \ell ub \ au ub$	$96\pm3\pm14$	$156\pm4\pm23$
$tar{t} ightarrow WbWb ightarrow \ell u b \ \ell u b$	$8.6\pm0.9\pm1.7$	$13\pm1.1\pm2.5$
$Z/\gamma^* ightarrow ee, \mu\mu$	$4.5\pm1.7\pm1.3$	$0.7\pm0.7\pm0.7$
$Z/\gamma^* o au au$	$16\pm3.2\pm2.9$	$25\pm4.2\pm6.3$
single top quark	$7.6\pm0.4\pm1.1$	$13.0\pm0.5\pm1.8$
di-boson	$1.2\pm0.1\pm0.2$	$2.0\pm0.2\pm0.3$
Total expected background	$188\pm7.9\pm20$	$298 \pm 11 \pm 32$
Data	176	288

Source	$N_{ev}^{e\mu} \pm$ stat. \pm syst.
HH+HW, m_{H^+} =120 GeV/ c^2 , BR($t \to H^+b$)=0.05	$121\pm9\pm13$
$t\bar{t}$ dileptons	$3323\pm34\pm397$
other $t\bar{t}$	$22\pm3\pm3$
$Z/\gamma^* \rightarrow ll$	$186\pm12\pm21$
W+jets	$14\pm 6\pm 2$
single top quark	$161\pm3\pm19$
di-boson	$47\pm2\pm5$
Total expected from SM	$3752\pm37\pm398$
Data	3875

e+mu

lep+tau

tau+jets

CMS Syst. Summary Tables

lep+tau

	HH	WH	$t\bar{t}_{\ell au}$	$t\bar{t}_{\ell\ell}$	au fakes	Single top	VV	DY(μμ)	$DY(\tau\tau)$
JES+JER+MET	6.0	5.0	5.0	4.0		6.0	11.0	100.0	22.0
cross-section	+7.0 -10				8.0	4.0 4.0		0	
pileup modeling	4.0	2.0	2.0	8.0		2.0	3.0	25.0	4.0
MC stat	5.0	4.0	2.0	9.0		4.0	9.0	100.0	16.0
luminosity		4.	5				4	.5	
au-jet id	6.0	6.0	6.0			6.0	6.0		6.0
jet, $\ell ightarrow au$ mis-id				15.0				15.0	
b-jet tagging	6.0	5.0	5.0	5.0		7.0			
jet→b mis-id							8.0	8.0	9.0
au fakes (stat)					10.0				
au fakes (syst)					12.0				
lepton selections		2.	0				2	0	

tau+jets

e+mu

	HH	WH	tĪ	DY(ll)	W+jets	Single top	VV
JES+JER+MET	2.1	2.0	2.0	6.0	10.8	4.0	6.5
cross section		$+7 \\ -10$		4.3	5.0	7.4	4.0
pileup modeling	4.5	4.5	5.0	5.5	4.0	5.5	5.5
MC stat	5.3	7.9	1.0	6.5	42.9	1.9	4.3
luminosity	4.5						
dilepton selection	2.5						

	HH	WH	multi	EWK	(+ <i>tī</i> genui	ne $ au$	EWK+ <i>tt</i> τ fakes		τ fakes
			jets	Emb.data	Res.DY	Res.WW	tĒ	tW	W+jets
JES+JER+MET	4.7-14	9.0–18		7.1	26	23	8.1	1.0	<10
cross-section	$^{+7.0}_{-10.0}$	$^{+7.0}_{-10.0}$					$+7.0 \\ -10.0$	8.0	5.0
pileup modeling	0.3–4.2	0.6–5.2			7.8	3.9	7.1	15	10
MC stat	6.2–11	7.0–10			30	66	28	49	71
luminosity	4	.5				4	5		
trigger	12–13	13		11	12	11	12	11	14
multi-jets stat.			6.5						
multi-jets syst.			3.8						
μ sample stat.				3.4					
multi-jet contamin.				0.3					
$f_{W \to \tau \to \mu}$				0.7	0.1	0.1			
muon selections				0.5	0.1	0.1			
lepton veto	0.3–0.5	0.5–0.7			0.9	1.2	0.9	0.6	0.3
τ -jet id	6.0	6.0		6.0	6.0	6.0			
jet, $\ell \rightarrow \tau$ mis-id								15	
b-jet tagging	1.1–2.1	1.0-1.7					1.4	1.6	
jet→b mis-id					2.0	2.6			4.8

H[±], tau+jets (CMS)

0.5 0

50

0 100 150 200 250 300 350 400 Transverse mass (τ_h , E_{τ}^{miss}) (GeV/c²)

H^{\pm} , tau+lepton (CMS)

NMSSM: Light Neutral al Higgs

NMSSM a $I \rightarrow \mu \mu$ (ATLAS)

- Trigger: di-muon (4/4)
- Offline: at least 2 muons(4) (isolated)
- q(mu1).q(mu2)<0
- 4.5 < mass < 14.0 GeV
- Pick di-muon combination using Likelihood Ratio based on vertex X²/NDF and muon isolation
 - LLH PDFs derived from data in sidebands
 - Main Backgrounds: Multijet and $\Upsilon(IS)$

NMSSM a $\rightarrow \mu\mu$ (CMS)

Selection

• Trigger:

- opposite sign di-muon (3.5/3.5)
- pT(μ1,μ2)>6 GeV, 5.5<m(μ1,μ2)<14 GeV
- Primary Vertex, $d_0 < 0.5$
- Offline: at least 2 muons(5.5) (isolated)
- q(mu1).q(mu2)<0
- 5.5 < mass < 14.0 GeV
- Pick di-muon comb. with highest vertex X² Prob
 - Main Backgrounds: Multijet and Y(IS) (mass shapes from data)
 - Set limits by fitting mass distribution

Fermiophobic Higgs

Fermiophobic $H \rightarrow \gamma \gamma$ (ATLAS)

- Trigger: di-photon (20/20)
- Offline: 2 isolated photons (40/25)
- 9 categories based on:
 - (un)converted photons
 - рт, ŋ
 - Main Backgrounds:
 - Prompt di-photon production
 - γ+jet, di-jet, Drell-Yann
 - Limits extracted using unbinned maximum likelihood fit to diphoton mass spectrum in each category
 - Excess at ~126 GeV is 1.6σ including look-elsewhere effect

Fermiophobic $H \rightarrow \gamma \gamma$ (CMS)

Selection

- Trigger: di-photon
- Offline: 2 isolated photons (not in 'crack')
- 3 categories:
 - Di-jet tag:
 - 2 jets (30/20), Δη_{jj}>3.5,m_{jj}>350 GeV
 - $|\eta_{YY}-\eta_{jj}| < 2.5, |\phi_{YY}-\phi_{jj}| > 2.6$
 - pT(Y1)>55mYY/120, pT(Y2)>25 GeV
 - Lepton tag:
 - I e(20) or I mu, ΔR(I,γ)>I
 - veto m(e,γ) within 5 GeV of Z-mass
 - p_T(γ₁)>45m_{YY}/120, p_T(γ₂)>25 GeV
 - Inclusive (not in tagged categories)
 - p_{T,YY}/m>0.1
 - $p_T(\gamma_1) > m_{YY}/3$, $p_T(\gamma_2) > m_{YY}/4$
 - Split into 4 categories using η and photon ID.
 - Main Backgrounds:
 - Prompt di-photon production
 - γ+jet and di-jet
 - Likelihood using mass for tagged categories and 2D mass-p_{T,YY} for inclusive

Excess at ~126 GeV, 1.2 σ including look-elsewhere effect

Other Fermiophobic-Higgs searches at CMS

- CMS has also released a fermiophobic-Higgs boson search including the WW and ZZ channels
- <u>CMS-HIG-12-008</u>

Combined Fermiophobic-Higgs limits

Doubly Charged Higgs

Doubly Charged Higgs (CMS)

Selection

- Trigger: di-lepton (17/8)
- Offline: At least 2 leptons (20/10)
- Discard pairs with m_{II}<12 GeV

Table 2: Selections applied in various three-lepton final states

Variable	ее, еµ, µµ	<i>eτ, μτ</i>
$\sum p_{\mathrm{T}}$	$> 1.1 \cdot m_{\Phi^{++}} + 60 \text{GeV}$	$> 0.85 \cdot m_{\Phi^{++}} + 125 \text{GeV}$
$ m(\ell^+\ell^-)-m_{Z^0} $	> 80 GeV	> 80 GeV
$\Delta \varphi$	$< m_{\Phi^{++}}/600 \text{GeV} + 1.95$	$< m_{\Phi^{++}}/200 \text{GeV} + 1.15$
$E_{\mathrm{T}}^{\mathrm{miss}}$	none	> 20 GeV
Mass window	$[0.9 \cdot m_{\Phi^{++}}; 1.1 \cdot m_{\Phi^{++}}]$	$[m_{\Phi^{++}}/2; 1.1 \cdot m_{\Phi^{++}}]$

Table 3: Selections applied in various four-lepton final states

Variable	ее, еµ, µµ	ετ, μτ
$\sum p_{\mathrm{T}}$	$> 0.6 \cdot m_{\Phi^{++}} + 130 \text{GeV}$	$> m_{\Phi^{++}} + 100 \text{GeV} \text{ or} > 400 \text{GeV}$
$ m(\ell^+\ell^-)-m_{Z^0} $	none	> 10 GeV
Mass window	$[0.9 \cdot m_{\Phi^{++}}; 1.1 \cdot m_{\Phi^{++}}]$	$[m_{\Phi^{++}}/2; 1.1 \cdot m_{\Phi^{++}}]$

Table 4: Selections applied in 3τ and 4τ related final states

Variable	3τ	4 au
$\sum p_{\mathrm{T}}$	$> m_{\Phi^{++}} - 10 \text{GeV} \text{ or} > 200 \text{GeV}$	$\sum p_T > 120 \text{GeV}$
$ m(\ell^+\ell^-)-m_{Z^0} $	> 50 GeV	> 50 GeV
$\Delta \varphi$	< 2.1	< 2.5
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 40 GeV	none
Mass window	$[m_{\Phi^{++}}/2 - 20; 1.1 \cdot m_{\Phi^{++}}]$	none

- Main Backgrounds:
 - Prompt di-photon production
 - γ+jet, di-jet, Drell-Yann
- Limits extracted using unbinned maximum likelihood fit to diphoton mass spectrum in each category

CMS Preliminary $\sqrt{s}=7$ TeV, $\int \mathcal{L}$ =4.6 fb $^{-1}$

Other Details

Maximum Likelihood Mass (CMS)

Mass Reconstruction (ATLAS)

Neutral MSSM Higgs : Mass reconstruction

1-prong τ decay

45<p_<50 [GeV]

Probability function

0.2

 $\Delta \theta_{3D}$ [rad]

0.15

- $m_{\tau\tau}^{\text{visible}}$ (invariant mass of visible tau decay products) Visible mass :
- Effective mass: $m_{\tau\tau}^{\text{effective}} = \sqrt{(p_{\tau^+} + p_{\tau^-} + p_{\text{miss}})^2}$ $p_{\text{miss}} = (E_{\text{T}}^{\text{miss}}, E_{\text{x}}^{\text{miss}}, E_{\text{y}}^{\text{miss}}, 0)$
- Missing mass calculator (MMC):
 - 7 unknown parameters: two "missing" 3-momenta, m.,
 - 4 constraints from E_x^{miss} , E_v^{miss} , $m_{\tau 1}$, $m_{\tau 2}$

Arbitrary u ATLAS Simulation Z→ττ Simulation \Rightarrow scan over $\Delta \Phi(v,l), \Delta \Phi(v,h), m_{vv}$ 0.01 ⇒ weight solution according to probability of 3D angle in solution ⇒ MMC mass = Max. of weighted 0.1 0.05 m₋₋ distribution

P_{ζ} and P_{ζ}^{vis}

$$P_{\zeta} = p_{\mathrm{T},1} \cdot \zeta + p_{\mathrm{T},2} \cdot \zeta + E_{\mathrm{T}}^{\mathrm{miss}} \cdot \zeta,$$
$$P_{\zeta}^{\mathrm{vis}} = p_{\mathrm{T},1} \cdot \zeta + p_{\mathrm{T},2} \cdot \zeta.$$