

Search for SM Higgs in the High Mass Region

Yanyan Gao (Fermilab)

On behalf of the CMS and ATLAS Collaborations

24th Rencontres de Blois, May 30th, 2012

The SM Higgs Branching Ratio

- In the high mass region (mH>200 GeV), Higgs decays predominantly into WW and ZZ
- Though not favored by EWK precision measurements, Higgs mass region is very sensitive to BSM Higgs mechanism
 - Especially in studying the unitarity violation in VV scattering
- The relative sensitivity of each channel also depend on trigger and respective backgrounds
 - Final states with quarks usually suffer from large background, resulting in poor S/B

The Higgs Mass Resolution

- In the high mass region the SM Higgs natural width is large
 - For very high mass region > 500 GeV, the natural width dominates (> 20%)
- The experimental Higgs mass resolution depends on final state

Higgs experimental mass resolution

Channel H →	mH resolution
ZZ→4I	I-2%
ZZ→2l2v	~10%
ZZ→2l2q	3%
₩₩→ΙνΙν	~20%
WW→Ivqq	~15%

Expected Sensitivity of Each Channel

• We expect to exclude a wide range up to ~ 600 GeV

Expected Sensitivity of Each Channel

- We expect to exclude a wide range up to ~ 600 GeV
 - Higgs mass < 300 GeV: $H \rightarrow ZZ \rightarrow 4I$ is the most sensitive channel
 - Higgs mass >300 GeV: $H \rightarrow ZZ \rightarrow (II)(VV)$ is most sensitive channel

- $H \rightarrow ZZ \rightarrow 4I$ search strategy and results
- $H \rightarrow ZZ \rightarrow (II)(VV)$ search strategy and results
- $H \rightarrow WW \rightarrow (Iv)(Iv)$ search strategy and results
- $H \rightarrow WW \rightarrow (Iv)(qq)$ search strategy and results
- $H \rightarrow ZZ \rightarrow (II)(qq)$ search strategy and results
- Conclusion: combined search results

"The Golden Channel" $H \rightarrow ZZ \rightarrow 4I$

7

4 high momenta, isolated leptons, 1-2% mass resolution

$H \rightarrow ZZ \rightarrow 4I$ Search Strategy

8

• Channel features

- Fully reconstructed Higgs mass with excellent resolution
- Main drawback is the limited statistics
- Main Background is the continuum ZZ
 - The solid understanding of ZZ m(4l) spectrum is the key of the analysis. The current theoretical uncertainty is ~10%
 - One of the most limiting factor in improving the analysis

Number of 4I candidates (CMS) with m(4I) [100-600] GeV

ZZ	Z+X	Total Background	Signal (350 GeV)	Obs
61.6 ± 3.5	5.5 ± 1.2	67.1 ± 3.7	9.2	72

• The m(4I) shape is used to extract final results

$H \rightarrow ZZ \rightarrow 4I$ Search Results

• The expected exclusion region from both experiments are comparable

	CMS	ATLAS
Expected Exclusion Region	[180-420] GeV	[184-400] GeV

- No excess is found and the observed limit is consistent to the expected
 - The observed result is subject to large statistical fluctuations

$H \rightarrow ZZ \rightarrow (II)(vv)$ Search Strategy

- Dileptons and large MET \rightarrow good S/B
 - Two missing neutrinos \rightarrow no mass peak
 - The large mH gives large boost to the Zs, creating high MET and large transverse activity

$H \rightarrow ZZ \rightarrow (II)(vv)$ Search Strategy

- The large mH gives large boost to the Zs, creating high MET and large transverse activity
- Main challenge is Z+Jets background
 - Cut on MET and veto jets faking MET topology
 - CMS: simulate the MET from γ +Jet data
 - ATLAS: taken from MC, verified with data

$H \rightarrow ZZ \rightarrow (II)(vv)$ Search Strategy

m_⊤ [GeV]

 $M_{\rm T}^2 = \left(\sqrt{p_{\rm T}(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_{\rm T}^{\rm miss^2} + M(\ell\ell)^2}\right)^2 - (\vec{p}_{\rm T}(\ell\ell) + \vec{E}_{\rm T}^{\rm miss})^2$

$H \rightarrow ZZ \rightarrow (II)(vv)$ Search Results

- Some differences between CMS and ATLAS
 - The CMS search is optimized for each mH, while the ATLAS search is divided in two regions
 - The ATLAS search includes Higgs signals $H \rightarrow WW \rightarrow (Iv)(Iv), ZZ \rightarrow (2I)(2q)/4I$
 - The $H \rightarrow WW \rightarrow (Iv)(Iv)$ contribution is [70%-13%] for Higgs with mass [200-300] GeV

	CMS	ATLAS
Expected Exclusion Region	[305-470] GeV	[260-490] GeV

• No excess is found, ATLAS observed a slight downward fluctuation

$H \rightarrow WW \rightarrow (Iv)(Iv)$ Search Strategy

gemm

W

W

- Final state include 2 good leptons, large MET \rightarrow Good S/B
 - No mass peak→poor mass resolution
 - High mass H→WW decays longitudinally, as in non-resonant WW g
 - No small opening angle signature as in low mass \rightarrow difficult to separate from WW

$H \rightarrow WW \rightarrow (Iv)(Iv)$ Search Strategy

gemm

W

- Final state include 2 good leptons, large MET \rightarrow Good S/B
 - No mass peak→poor mass resolution
 - High mass H→WW decays longitudinally, as in non-resonant WW g
 - No small opening angle signature as in low mass → difficult to separate from WW
- Without a distinct signature, solid background estimation is the key of the analysis
 - The main background WW is taken from MC with appropriate theoretical uncertainties
 - The reducible backgrounds such as W/Z+jet and Top are estimated from data

$H \rightarrow WW \rightarrow (Iv)(Iv)$ Search Strategy

gemm

W

W

- Final state include 2 good leptons, large MET \rightarrow Good S/B
 - No mass peak→poor mass resolution
 - High mass H→WW decays longitudinally, as in non-resonant WW g
 - No small opening angle signature as in low mass → difficult to separate from WW
- Without a distinct signature, solid background estimation is the key of the analysis
 - The main background WW is taken from MC with appropriate theoretical uncertainties
 - The reducible backgrounds such as W/Z+jet and Top are estimated from data
- Perform shape analysis for the final results based on either MVA or the best single variable

$H \rightarrow WW \rightarrow (Iv)(Iv)$ Search Results

- The searches are split into sub-channels based on number of jets and lepton flavors
 - The 0-jet (eµ) channel is the most sensitive one
 - The CMS search benefits from MVA which uses more variables and explores their correlations

	CMS	ATLAS
Expected Exclusion Region	[127-270] GeV	[127-234] GeV

• No excess is found and the observed result is consistent with the expectation

$H \rightarrow WW \rightarrow (Iv)(qq)$ Search Strategy

- Channel features
 - Final state: I lepton, 2jets, and large MET
 - Largest signal size
 - Higgs mass is reconstructed by constraining m(Iv) = m(W)

$H \rightarrow WW \rightarrow (Iv)(qq)$ Search Strategy

- Channel features
 - Final state: I lepton, 2jets, and large MET
 - Largest signal size
 - Higgs mass is reconstructed by constraining m(Iv) = m(W)
- Main Challenge
 - Large W+jet background \rightarrow Poor S/B
 - Use events in the m(jj) side band (SB) to extrapolate to the signal region

$H \rightarrow WW \rightarrow (Iv)(qq)$ Search Strategy

Entries / 20 Ge'

20

- Channel features
 - Final state: I lepton, 2jets, and large MET
 - Largest signal size
 - Higgs mass is reconstructed by constraining m(Iv) = m(VV)
- Main Challenge
 - Large W+jet background \rightarrow Poor S/B
 - Use events in the m(jj) side band (SB) to extrapolate to the signal region
- Use m(Inqq) shape to extract final result
 - In higher mass region, apply additional selections, exploring the large mH

$H \rightarrow WW \rightarrow (Iv)(qq)$ Search Results

• The expected exclusion region

	CMS	ATLAS
Expected exclude region	[345-430] GeV	-

- The CMS search window extends down to 170 GeV
- No excess is found and the observed limit is consistent to the expected

$H \rightarrow ZZ \rightarrow (II)(qq)$ Search Strategy

- Fully reconstructed final state
 - Good mass resolution if constraining eventby-event m(qq) = m(Z)

$H \rightarrow ZZ \rightarrow (II)(qq)$ Search Strategy

- Fully reconstructed final state
 - Good mass resolution if constraining eventby-event m(qq) = m(Z)
- Main Challenge
 - Large Z+jet background \rightarrow Poor S/B
 - Use events in the m(jj) side band region to extrapolate to the signal region

CMS, L = 4.6 fb⁻¹ at \s = 7 TeV

$H \rightarrow ZZ \rightarrow (II)(qq)$ Search Strategy

- Fully reconstructed final state
 - Good mass resolution if constraining eventby-event m(qq) = m(Z)
- Main Challenge
 - Large Z+jet background → Poor S/B
 - Use events in the m(jj) side band region to extrapolate to the signal region
- Use m(llqq) shape to extract final result
 - Split the search into different channels based on number of b-quarks
 - Best channel: events with 2 b-quarks
 - Apply additional kinematic/topological selections to explore the large mH

Entries / 50 GeV

$H \rightarrow ZZ \rightarrow (II)(qq)$ Search Results

• The expected exclusion region

	CMS	ATLAS
Expected exclude region	-	[360-400] GeV

No excess is found and the observed limit is consistent to the expected

Conclusion

- Using 5/fb data at 7 TeV, CMS and ATLAS searched for SM Higgs with mass < 600 GeV
 - No signal excess is found and the SM Higgs with a large mass range excluded as expected

Conclusion

- Using 5/fb data at 7 TeV, CMS and ATLAS searched for SM Higgs with mass < 600 GeV
 - No signal excess is found and the SM Higgs with a large mass range excluded as expected

- SM Higgs is not the final destiny of HEP, it is important to keep the search open
 - With the ~15/fb data expected in 2012, the search will be extended up to ~ 1 TeV
 - The prospective results will continue to probe the EWK sector of the SM physics
 - In the absence of SM Higgs, studies of VV scattering at high \sqrt{s} are important to explain the otherwise anomalous predictions such as unitarity violation in VV scattering