

Rencontres de Blois May 2012

Higgs boson searches in vector boson fusion

Barbara Jäger Johannes Gutenberg University Mainz

Rencontres de Blois May 2012

Higgs boson searches in vector boson fusion –a theorist's point of view

Barbara Jäger Johannes Gutenberg University Mainz

VBF event topology

suppressed color exchange between quark lines gives rise to

Iittle jet activity in central rapidity region

 ♦ scattered quarks → two forward tagging jets (energetic; large rapidity)

Higgs decay products typically between tagging jets

Higgs production in VBF @ NLO QCD

NLO QCD:

inclusive cross section:

Han, Valencia, Willenbrock (1992)

distributions:

Figy, Oleari, Zeppenfeld (2003) Berger, Campbell (2004) NLO QCD corrections moderate and well under control (order 10% or less)

 \rightarrow

publicly available parton-level Monte Carlos: vbfnlo MCFM

Higgs production via vector-boson fusion

vbfnlo is a fully flexible parton level Monte Carlo for processes with electroweak bosons at NLO-QCD in the SM and beyond

http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb

cross sections and distributions at NLO-QCD (NLO-EW) accuracy for VBF Hjj production and various other processes

user-defined cuts, factorization / renormalization scales, PDF sets

LO: event files in Les Houches Accord (LHA) format

various BSM features:
MSSM anomalous couplings Kali

MSSM, anomalous couplings, Kaluza-Klein models, ...

Higgs production in VBF @ NLO EW

Ciccolini, Denner, Dittmaier, Mück:

NLO EW corrections to inclusive cross sections and distributions

NLO EW corrections non-negligible, modify K factors and distort distributions by up to 10%

HAWK:

"A Monte Carlo generator for the production of Higgs bosons Attached to Weak bosons at hadron colliders" (Ciccolini, Denner, Dittmaier, Mück)

- NLO QCD and EW corrections
- all weak-boson fusion and
 - quark-antiquark annihilation graphs
- interference effects at LO and NLO
- contributions from incoming photons
- Ieading heavy-Higgs-boson effects at two-loop order
- contributions of b-quark pdfs at LO

an interface to LHAPDF

SUSY QCD+EW corrections to VBF

Hollik, Plehn, Rauch, Rzehak (2008) & Figy, Palmer, Weiglein (2010):

 $\frac{\text{SUSY QCD \& EW corrections}}{\text{for inclusive cross sections}}$

in typical regions of the MSSM parameter space

Harlander, Vollinga, Weber (2007):

gauge invariant, finite sub-class of virtual two-loop QCD corrections to $pp \rightarrow Hjj$ via VBF

VBF cuts: relative suppression by additional order of magnitude

Bolzoni, Maltoni, Moch, Zaro (2010,2011):

subset of the NNLO QCD contributions to the total cross section for $pp \rightarrow Hjj$ via VBF in the structure function approach

 NNLO predictions are in full agreement with NLO results

 ✤ residual scale uncertainties are reduced from ~4% to 2%

 NNLO PDF uncertainties are at the 2% level

CTEQ:

difference between sets $\sigma_{6.1}/\sigma_{6.6} \lesssim 4\%$

PDF uncertainty $\Delta_{
m PDF} \lesssim 3.5~\%$

for 100 GeV $\leq M_H \leq$ 800 GeV

VBF can be faked by double real corrections to $gg \rightarrow H$ ("gluon fusion")

complete LO calculation (including pentagons) in the SM Del Duca, Kilgore, Oleari, Schmidt, Zeppenfeld (2001)

> And in a generic two-Higgs doublet model: Campanario, Kubocz, Zeppenfeld (2011)

* complementary: NLO QCD calculation in $m_t \rightarrow \infty$ limit: Campbell, Ellis, Zanderighi (2006) can VBF×GF interference pollute the clean VBF signature?

Georg (2005) & Andersen, Smillie (2006):

- neutral current graphs
 (no charged current interference)
- ig* identical quark contributions with $t \leftrightarrow u$ crossing

Andersen et al. (2007) Bredenstein, Hagiwara, B. J. (2008):

strong cancelation effects
 between contributions of
 different flavor

interference effects are completely negligible

VBF: signal & backgrounds

distinct event topology of the Higgs signal in pp
ightarrow Hjj via VBF with $H
ightarrow W^+W^-
ightarrow e^\pm \mu^\mp p_T$

important for suppression of backgrounds

★ $t\bar{t} + 0, 1, 2$ jets production (note: $t\bar{t} \to W^+W^-b\bar{b}$)
♦ QCD W^+W^-jj production
♦ EW W^+W^-jj production

$$pp
ightarrow W^+W^- jj \ldots$$

irreducible background to VBF-induced Higgs production, followed by decay into W bosons

$$pp
ightarrow Hjj
ightarrow W^+W^-jj$$

in $H \rightarrow W^+W^-$: spins anti-correlated \downarrow leptons emitted preferentially in same direction

no such correlation, if *W* bosons do not stem from the Higgs *Dittmar, Dreiner (1996)*

distribution for EW W^+W^- production significantly different from Higgs signal Rainwater, Zeppenfeld (1999)

rapidity separation of the tagging jets

jets more central in QCD- than in EW-induced production processes

VBF signal / background analysis

 \sim selection of signal and background rates for $M_H = 160~{
m GeV}$ (in [fb])

cuts	Hjj	$t\bar{t}$ +jets	QCD WWjj	EW WWjj	 S/B
forward tagging	17.1	1080	4.4	3.0	 1/65
+b veto		64			 1/5.1
+angular cuts	11.4	5.1	0.50	0.45	 1.7/1
+central jet veto	10.1	1.48	0.15	0.34	 4.6/1
all cuts	7.5	1.09	0.11	0.25	 4.6/1

Rainwater, Zeppenfeld (1999)

central jet veto (CJV):

remove events with extra jet(s) in central-rapidity region $p_T^{ m veto}>20$ GeV, $\eta_{ m jet}^{ m min}<\eta_{ m jet}^{ m veto}<\eta_{ m jet}^{ m max}$

cuts	Hjj	$t\bar{t}+$ jets	QCD WWjj	EW WWjj	 S/B
forward tagging	17.1	1080	4.4	3.0	 1/65
+b veto		64			 1/5.1
+angular cuts	11.4	5.1	0.50	0.45	 1.7/1
+central jet veto	10.1	1.48	0.15	0.34	 4.6/1
all cuts	7.5	1.09	0.11	0.25	 4.6/1

Rainwater, Zeppenfeld (1999)

central jet veto (CJV):

remove events with extra jet(s) in central-rapidity region

 $p_T^{
m veto} > 20~{
m GeV},\, \eta_{
m jet}^{
m min} < \eta_{
m jet}^{
m veto} < \eta_{
m jet}^{
m max}$

precise knowledge of extra jet activity essential, requiring

dominant NLO-QCD corrections modest

scale uncertainties of CJV observables significantly reduced

for realistic description of scattering processes at hadron colliders:

 combine matrix elements for hard scattering
 with programs for simulation of

underlying event, parton shower, and hadronization

(Pythia, Herwig, Sherpa,...)

pp ightarrow Hjj via VBF and parton showers

rapidity separation of the third jet: $y^{\star} = y_3 - \frac{1}{2} \left(y_1 + y_2 \right)$

Pythia: rapidity gap filled by parton shower

better understanding and modeling needed recent progress: the **POWHEG** method (Nason et al.)

- prescription for matching parton-level NLO-QCD calculation with parton shower program:
 - no double counting of real-emission contributions
 - produces events with positive weights
 - method in principle applicable to any process
 - tools for "do it yourself" implementation publicly available (the POWHEG BOX)

pp ightarrow Hjj via VBF and parton showers @ NLO

good agreement between parton-level NLO calculation and POWHEG matched with HERWIG or PYTHIA for many observables

✤ for high multiplicites, HERWIG produces harder jets than PYTHIA

pp ightarrow Hjj via VBF and parton showers @ NLO

◆ parton-level NLO calculation matched via POWHEG with HERWIG++ including vetoed truncated shower (↔ angular-ordered PS)

HERWIG++ results differ from pure parton level at LO and NLO

pp ightarrow Hjj via GF in the <code>POWHEG-BOX</code>

Campbell et al. (2012)

pp ightarrow Hjj via GF in the <code>POWHEG-BOX</code>

impact of matching to parton shower depends on observable and scale settings

Barbara Jäger / May 2012

 full understanding of parton-shower programs for signal and backgrounds

thorough study of: • underlying event

- multiple parton interactions
- double parton scattering

 parton-shower cannot be used to simulate hard jets;
 multi-purpose programs are often not fast and flexible enough to account for complex multi-particle processes

flexible (dedicated) Monte Carlo codes that can be matched to parton-shower programs are needed for all multi-leg processes at the LHC

most general *HVV* vertex:

$$egin{array}{rcl} T^{\mu
u} &=& a_1\,g^{\mu
u} + \ && a_2\,\left(q_1\cdot q_2\,g^{\mu
u} - q_1^
u\,q_2^\mu
ight) + \ && a_3\,\epsilon^{\mu
u
ho\sigma}q_{1
ho}q_{2\sigma} \end{array}$$

physical interpretation:

SM Higgs scenario: $\mathcal{L} \sim H V_{\mu} V^{\mu} \rightarrow a_1$ CP even scenario: $\mathcal{L}_{eff} \sim H V_{\mu\nu} V^{\mu\nu} \rightarrow a_2$ CP odd scenario: $\mathcal{L}_{eff} \sim H V_{\mu\nu} \tilde{V}^{\mu\nu} \rightarrow a_3$

tensor structure of the HVV coupling

 $rac{a}$ tagging jet p_T distributions sensitive to anomalous couplings

CP properties of the Higgs boson

azimuthal angle between tagging jets

dip structure at 90° (CP even) or $0/180^{\circ}$ (CP odd) only depends on tensor structure of HVV vertex

(little dependence on actual size of form factor, QCD corrections, Higgs mass etc.)

LHC rates for partonic process aa
ightarrow H
ightarrow dd given by

combining information from various production and decay modes (including VBF) with only mild model assumptions

yields information on partial widths and couplings

determination of partial widths

with 200 fb⁻¹@14 TeV measure partial widths with 10-30% errors, couplings with 5-15% errors

determination of Higgs couplings

Dührssen et al. (2004)

needed: alternative strategies for getting backgrounds under control

- require additional W boson or central photon in WBF Higgs production at the LHC
 - signal / background ratio dramatically improved Rainwater (2000), Gabrielli et al. (2007)

 consider Higgs production at a future lepton-hadron collider, such as the Large Hadron electron Collider (LHeC)

LHC proton beam combined with electron beam

separate linac

extra ring in LHC tunnel

effects of hard central photon requirement:

x "naive expectation": signal and background suppressed by same factor $\sim \mathcal{O}(\alpha)$

 \checkmark de facto: reduction factors different for S and B

backgrounds: $\sigma_\gamma/\sigma \sim 1/3000$ signal: $\sigma_\gamma/\sigma \sim 1/100$

$$\checkmark \left(S/\sqrt{B}
ight)_{H\gamma jj}\lesssim 3$$
 for $m_H=120$ GeV, $\mathcal{L}=100$ fb $^{-1}$ and optimized selection cuts

NLO-QCD corrections available [Arnold, Figy, BJ, Zeppenfeld (2010)]

summary: Higgs signal in VBF

✓ $pp \rightarrow Hjj$ via VBF under excellent control:

- background suppression possible
- QCD & EW NLO corrections at 10% level
- dominant NNLO QCD/SUSY corrections small
- small PDF uncertainties

- * reliable prediction of CJV observables requires
 - matching NLO-QCD calculations to parton shower programs
 - ightarrow NLO-QCD predictions for pp
 ightarrow Hjjj
- × determination of Higgs properties requires more data

VBF crucial for understanding mechanism of electroweak symmetry breaking

important pre-requisites:

explicit calculations revealed that
 VBF reactions are perturbatively well-behaved

backgrounds are well under control

essential: provide and use flexible precision tools for signal and background processes which allow for calculation of accurate cross sections and distributions within realistic acceptance cuts