Standard Model Higgs Searches at the Tevatron

Elisabetta Pianori on behalf of CDF and D0 collaborations

THE UNIVERSITY OF WARWICK

24th Recontres de Blois May 27-June 1, 2012

Status of Higgs direct searches

 $m_{_{\rm H}} < 117.5$, 118.5 < $m_{_{\rm H}} < 122.5$, 127 < $m_{_{\rm H}} < 600$ excluded at 95% C.L.

Status of Higgs direct searches

Excess Global significance: 2.2σ

Excess Global significance: 2.1σ

Most of the sensitivity from $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ or $H \rightarrow WW$

Higgs searches at the Tevatron

 $H \rightarrow \gamma \gamma$

H→WW

CDF, D0

 $\sigma(H) \times B (H \rightarrow b\overline{b}) \sim 0.5 \text{ pb}$ - overwhelmed by QCD

- other rare decay modes ($\gamma\gamma$, $\tau\tau$) less sensitive

 \rightarrow Associated production: main low mass channel

Complementary to LHC current analyses:

Higgs-fermion coupling necessary to determine nature of a signal

$\mathbf{H} \rightarrow \mathbf{b} \mathbf{b}$ final states : topic of this talk

10-13*S M	1.5-2*SM
~3.5*SM	1-2*S M
~2*S M	~3.5*SM
Feb 2012 m _H =	= 125 GeV/c²

Atlas, CMS

The Tevatron

$p\overline{p}$ collider, $\sqrt{s} = 1.96$ TeV

- 12 fb⁻¹ delivered
- ~90% data collected per experiment

Analyses presented today use full dataset CDF: $\int L = 9.45 \text{ fb}^{-1}$ D0 : $\int L = 9.7 \text{ fb}^{-1}$

$H \rightarrow b\overline{b}$ channels

WH→lvbb

Large production cross section Backgrounds:

W+bb, ttbar and single top, Multijet production

ZH→llbb Fully constrained Small Signal

Backgrounds: Z+jets, ttbar, Diboson

ZH→vvbb

3xsignal of ZH→llbb(+ contributions from WH) Dominated by instrumental background

Changes since last summer

- Use full RunII dataset +15%-50% of data
- Inclusive triggering use logical OR of multiple triggers : high pt leptons, MET, multiple objects → increase acceptance to both signal and background
- Relax Event Selection
- Improved b-tagging techniques

Improving Signal-to-Background separation

- Improved dijet invariant mass resolution
- Improved multivariate discriminants
- Improved background modeling

B-quark jet tagging

Identify b's exploiting long life-time and large mass of b-hadrons

MVA approach, using as input variables:

- secondary vertex
- track impact parameter
- jet mass
- distribution of tracks in jet cone Etc..

Pro's: continuous output can be optimized

```
    CDF – HOBIT NN
    NN discriminant trained using properties of H-> bb decays
```

	New Tag Efficiency	Old Tag Efficiency
B-jets	54 – 59%	39 – 47 %
LF jets	1 – 2%	1 – 2 %

 D0 – L_b BDT
 Continuous output ranked into 12 operating points, based on purity

	New Tag Efficiency	Old Tag Efficiency
B-jets	50 – 70%	45 – 65 %
LF jets	0.5 – 4.5%	0.5 – 4.5 %

B-jet tagging efficiency can not be directly compared between CDF and Do

Optimized b-tagger: → **increase in acceptance** CDF: >10% sensitivity improvement due to HOBIT

Optimized b-tagger: \rightarrow increase in acceptance

CDF: >10% sensitivity improvement due to HOBIT

Sort events in orthogonal samples according to purity of b-tagged jets: improve sensitivity

Optimized b-tagger: → **increase in acceptance** CDF: >10% sensitivity improvement due to HOBIT

Sort events in orthogonal samples according to purity of b-tagged jets: improve sensitivity

Optimized b-tagger: → **increase in acceptance** CDF: >10% sensitivity improvement due to HOBIT

Sort events in orthogonal samples according to purity of b-tagged jets: improve sensitivity

Signal-to-background separation

- Classify events in regions with increasing S/B ratio
- Use MVA to discriminate background from signal

Signal-to-background separation

- Classify events in regions with increasing S/B ratio
- Use MVA to discriminate background from signal

Validation of Higgs Searches

Reminder of what we have done:

Validation of Higgs Searches

• WZ/ZZ $\rightarrow b\overline{b}$ signal is ~4 x VH $\rightarrow b\overline{b}$ \rightarrow use $\sigma(WZ/ZZ)$ to validate methods for VH search

 $\sigma(W^{\pm}Z^{0}) = 3.22^{+0.20}_{-0.17}(\text{scale})^{+0.11}_{-0.08}(\text{PDF}) \text{ pb}$

 $\sigma(Z^0Z^0) = 1.20^{+0.05}_{-0.04}$ (scale) $^{+0.04}_{-0.03}$ (PDF) pb

Use current VH analysis event selection/bkg model/event classification Train final discriminant for $WZ/ZZ \to b\overline{b}$ signal .

Validation of Higgs Searches

 $\sigma(WZ + ZZ) = 4.47 \pm 0.64 \text{ (stat)} \pm 0.73 \text{ (stat) pb}$ SM prediction = 4.4 ± 0.3 pb

CDF Low Mass Exclusion Limit

$ZH \rightarrow ll b\overline{b}$

 $WH \to l\nu \ b\overline{b}$

 $ZH \rightarrow \nu \nu b\overline{b}$

D0 Low Mass Exclusion Limit

Tevatron Low Mass Exclusion Limit

Low Mass Excess Significance

Local significance is diluted by look elsewhere effect

Look Elsewhere Effect at the Tevatron:

Di-Jet Mass resolution ~ 15 GeV/c² ~ 2 independent searches in 100 < $m_{_{
m H}}$ < 150 GeV/c² \rightarrow LEE factor ~ 2

Global Significance: 2.60

Tevatron All Channels Combination

	$M_{\rm H}$ [GeV/c ²]	Local Significance	Global Significance
Tevatron	120	2.7σ	2.2σ
Atlas	126	2.5 o	2.2σ
CMS	124	3.1 σ	2.1 σ

Summary

• LHC experiments will reach sensitivity to rule out SM Higgs boson or see a significant excess in the next few months

• Currently, low mass Higgs searches at the Tevatron show comparable sensitivity and similar excess to LHC:

Expected 95 C.L. limit (in absence of Higgs signal) < .15 x $\sigma_{_{\rm SM}}$ for $m_{_{\rm H}}$ < 180 GeV/c²

Broad excess in observed data compared the the bkg-only hypothesis 105 < $m_{_{\rm H}}$ < 145 GeV/c 2 with global significance ~ 2.2 σ

Tevatron searches currently provide a unique test of Standard Model

• In the near future:

Do expect to incorporate significant improvements CDF working on implementing new b-tagger in MET+b \overline{b} analysis

 \rightarrow more new interesting results from the Tevatron for the summer

For additional details see:

Tevatron: http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/
 CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
 D0: http://www-do.fnal.gov/Run2Physics/WWW/results/higgs.htm

Back Up

CDF ZH $\rightarrow \nu \nu b\overline{b}$

- 21% additional luminosity
- Small improvements in background rejection
- Limits show same basic behavior with 0.5 to 1.0σ increases in significance of excess

CDF WH →lv bb

- 26% (69%) additional luminosity for 2-jet (3-jet) channels
- 5-10% level lepton acceptance/trigger efficiency improvements
- New HOBIT b-tagger equivalent to adding another 20% in additional luminosity
- Limits show same basic behavior with 1.0 to 1.5σ increases in significance of excess

Standard Model

150

140

Hobit Performance

Hobit Performance in WH $\rightarrow l\nu$ bb

OLD		NEW - HOBIT		
Tagging Category	S /√B		Tagging Category	S /√B
$S \circ c V t + S \circ c V t$	0 228		Tight-Tight	0.266
X	0.220		Tight-Loose	0.200
SecVtx+JetPro	0.160		Single Tight	0.143
b			Loose-	0.053
SecVtx+Roma	0.103		Loose	
Single SecVtx	0.146)	Single Loose	0.044
Sum	0 331			
	0.001		Sum	0.369

- Significant effort to optimize tagging categories and thresholds for loose/tight HOBIT selections
- ▶ 11% gain in S/√B translates directly into increase in overall search sensitivity

$CDF ZH \rightarrow ll b\overline{b}$

- 23% additional luminosity
- More gain from HOBIT in this analysis than WH (original tagging not as sophisticated)
- 56% of data events in current analysis were not included in previous analysis!
- ▶ 37% sensitivity improvement (4.67 \rightarrow 2.95 at mH=120 GeV/c2)

CDF ZH $\rightarrow \mu\mu b\overline{b}$

- Muon channels
- See only a slight change in behavior of limits ($\sim 0.5\sigma$)

CDF ZH \rightarrow ee b \overline{b}

- Electron channels
- Here we observe a significant change

$CDF ZH \rightarrow ll b\overline{b}$

 $\rm ZH \rightarrow llbb$ channel has :

- Iowest backgrounds
- smallest expected signal yields (9 events for mH=120 GeV/c²)

Some discriminant bins with large S/B

Low probability for observing events in these bins

≻A few such events can have substantial effects on observed limits

CDF W+jets

 Tagged samples used for Higgs searches do not contain any sign of abnormalities that were seen previously in pretagged region

CDF W+jets

- Lots of studies to try to understand what's going on in the pre-tag region
- Detailed studies in Z + 1 jet events to understand potential differences in quark and gluon jet energy scales
- Bottom line of these studies is that the JES for gluon jets needs to be shifted by 2σ in MC to match with data
- The JES for quark jets is good

 not surprising since well
 constrained by top mass
 measurements

Z-Jet Balancing: Jet QG Value

χ^2 of Data and MC Comparisons

JES Shift

CDF W+jets

- In CDF Higgs searches we apply -2σ JES corrections to the gluon jets in our MC samples
- In the end, the effect of this is small since there are few gluon jets in our tagged event samples
- With these corrections in place we do not observe mismodeling in the pre-tag region of our lvjj Higgs search

Caveat is looser cuts are applied than in the "bump" search analysis No official statement from CDF regarding "bump" at this time

CDF Excess at $m_{\rm H} = 195 \text{ GeV}$

- Behavior of observed limits driven by small event excesses in the high S/B regions of opposite-sign dilepton 0 and 1 jet channels
- Nothing peculiar in the modeling of these distributions
- Of course, ATLAS and CMS have ruled out a mH = 195 GeV/c² SM Higgs based primarily on equivalent searches in H->WW

D0 improvements

~12% more data \Rightarrow ~6% improvement

Increased lepton efficiency / acceptance

- WH \rightarrow lvbb: new multivariate electron identification $\Rightarrow \sim 5\%$ improvement
- WH \rightarrow lvbb: increased muon acceptance \Rightarrow 5-10% (in progress)
- FSR and semi-leptonic jet corrections $\Rightarrow \sim 1\%$

Improved multivariate discrimination

 2–10% depending on analysis (room for more in the future) More optimized b-tag categories

- ZH $\rightarrow v\overline{v}b\overline{b}$: b-tag outputs sum to define b-tag bins $\Rightarrow \sim 15\%$
- WH \rightarrow lvbb: three b-tag channels $\Rightarrow \sim 5\%$

(Future improvements with c-jet discrimination)

D0 improvements

Di-jet Invariant Mass Resolution

Higgs signal appears as a resonance over a falling background \rightarrow di-jet mass is the single most discriminating variable

B-quark jets have very different properties from light quark jets \rightarrow develop NN b-jet specific energy corrections

Multivariate Methods

- Look at many variables simultaneously

 → exploit non-linear correlation between variables
- Choose well modeled, separating variables
- Neural Networks (NN), Decision Trees (DT)
- DT arboretum: Random Forest (RF)

• Typically see ~ 10 - 20% sensitivity improvement w.r.t. single best variable Mjj

Random Forest

- Can do even better
- Train lots of decision trees
 - Each tree gets a random subset of events
 - At each node check a random subset of variables
 - Take the performance weighted average
- Need to take care...