

SEARCH FOR tt RESONANCES implications for new physics models

24th Rencontres de Blois

Samvel Khalatyan @ UIC University of Illinois at Chicago on behalf of CMS and ATLAS collaborations

INTRODUCTION

- Many Beyond the Standard Model theories predict new heavy states (e.g. Z' bosons) decaying to $t\bar{t}$: topcolor Z', Randall-Sundrum Kaluza-Klein gluons
- Split searches into different channels based on $t\bar{t}$ final state: dilepton, lepton+jets, all-hadronic
- Results on searches for new physics in CMS and ATLAS experiments are presented

University of Illinois Samvel Khalatyan 24th Rencontres de Blois at Chicago

CMS TOP-11-010 L = 5.0 fb⁻¹

- two **isolated** leptons e $P_T > P_T > P$
- reject low mass resonances $M_{\parallel} > 10 \text{ GeV}$ suppress Z-boson production $|M_Z - M_{\parallel}| > 10 \text{ GeV}$
- **two** or more anti- K_T (R=0.5) jets $P_T > P_T$
- large transverse missing energy MET >
- secondary vertex b-tagged jet

 (60% b-tag and 2% mistag rate)
- Model QCD multijet from data by inverting the isolation requirement
- Correct Drell-Yan yield in the Z-boson production region

of entries. **CMS** Preliminary Data 5.0 fb⁻¹ at√s = 7 TeV tt Z/γ*→l^{*}l No. VV (ee) $P_T > 20 \text{ GeV}$ W→lv Single-Top 1000 Multijets $P_T > 20 \text{ GeV}$ Z' 500 GeV (x 2) Z' 750 GeV (x10) Z' 1000 GeV (x20) $M_{\parallel} > 10 \text{ GeV}$ 500 $P_T > 30 \text{ GeV}$ 500 1000 M(2j2l2v) [GeV] No. of entries MET > 30 GeVCMS Preliminary Data 5.0 fb⁻¹ at√s = 7 TeV tt Z/γ*→I^{*}Ϊ VV (μμ) W→lv Single-Top 1000 Multijets Z' 500 GeV (x 2) Z' 750 GeV (x10) - Z' 1000 GeV (x20) 500 1000 500 M(2j2l2v) [GeV]

CMS TOP-II-010 $L = 5.0 \, fb^{-1}$

Excluded mass region narrow Z' mass < 1.1 TeV

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

$L = 1.04 \text{ fb}^{-1}$ ATLAS-CONF-2011-123

- two isolated leptons е μ reject low mass resonances
- suppress Z-boson production $|M_Z - M_{\parallel}| > 15 \text{ GeV}$
- **two** or more anti- K_T (R=0.4) jets (remove jet if ΔR (electron, jet) < 0.2)
- large missing energy suppress non-tt events ($e\mu$)
- Contribution of W+jets and QCD multijet is estimated from data using the Matrix Method
- Extract Drell-Yan from data in the Z-boson production region

 $M_{\parallel} > 12 \text{ GeV}$

 $P_T > 30 \text{ GeV}$

MET > 40 GeV $H_T > 130 \text{ GeV}$

ATLAS-CONF-2011-123 $L = 1.04 \text{ fb}^{-1}$

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

LEPTON+JETS CHANNEL (ATTHRESHOLD)

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

	LEPTON+JE	TS CHAN	NNE
	CMS TOP-II-009	L = 4.7 fb ⁻¹	
• one	isolated	е	$P_T >$
		μ	$P_T >$

- veto second lepton
- **three** or more anti- K_T (R=0.5) jets leading jet
- missing energy
- secondary vertex b-tagged jet (60% b-tag and 2% mistag rate)
- Model QCD multijet from data by inverting the isolation requirement
- W+jets yield is normalized to data yield in the control region: four jets, no b-tags

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

EL (ATTHRESHOLD)

30 GeV 20 GeV

 $P_T > 50 \text{ GeV}$ $P_T > 70 \text{ GeV}$

MET > 20 GeV

LEPTON+JETS CHANNEL (ATTHRESHOLD)

CMS TOP-11-009 $L = 4.7 \text{ fb}^{-1}$

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

LEPTON+J	ETS C	HANNE
ATLAS-CONF-20 arXiv:1205.5371	12-029	L = 2.05 fb ⁻¹
 one isolated 	e µ	$E_T > 25$ $P_T > 25$
 four or more anti-K_T (R= (three jets if found Mjet > 60 GeV) 	=0.4) jets eading jet	$P_T > 25$ $P_T > 60$
 large missing energy 	e µ	MET > 35 MET > 20
 transverse mass 	e µ	$M_T > 25$ MET+ $M_T > 60$

- (multiple) secondary vertices based b-tagged jet (60% b-tag)
- Model QCD multijet from data by faking lepton with jet
- Apply data driven correction due to charge asymmetry in W+jets production

C University of Illinois | Samvel Khalatyan | 24th Rencol at Chicago

EL (ATTHRESHOLD)

$$m_T = \sqrt{2p_T^l \not\!\!E_T (1 - \cos \Delta \phi)} \qquad \blacksquare$$

LEPTON+JETS CHANNEL (ATTHRESHOLD)

$L = 2.05 \text{ fb}^{-1}$ **ATLAS-CONF-2012-029** arXiv:1205.5371

Excluded mass region narrow Z' mass < 0.86 TeV

KK gluon mass < 1.03 TeV

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

LEPTON+JETS CHANNEL (BOOSTED)

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

LEPTON+JETS CHANNEL (BOOSTED) **New** CMS EXO-11-093 $L = 5.00 \text{ fb}^{-1}$

motivation

• the signal efficiency drops if isolated lepton is required:

Z' I TeV	~ 8%
Z' 1.5 TeV	~ 28%
<i>Z' 2T</i> eV	~ 47%
Z' 3TeV	~ 54%

- low mass search uses 3+ jets
- 2 jets bin is highly populated with signal and almost no background

LEPTON+JETS CHANNEL (BOOSTED)

CMS EXO-11-093 L = 5.00 fb⁻¹

- one lepton (no isolation is applied) μ $P_T > 35 \text{ GeV}$ $P_T > 70 \text{ GeV}$
- drop event if second lepton is present

and

- **two** or more anti-K_T (R=0.5) jets $P_T > 50 \text{ GeV}$ leading jet μ $P_T > 250 \text{ GeV}$ e $P_T > 150 \text{ GeV}$
- suppress QCD multijet
 2D cut

 $\Delta R > 0.5 \text{ or } P_T^{rel} > 25 \text{ GeV}$ $H_T^{lep} > 150 \text{ GeV}$

- additional topological cuts in e+jets channel to reject QCD multijet
- reconstruct top quarks in simulation by matching reconstructed jets to partons

University of Illinois | Samvel Khalatyan | 24th Rencontres de Blois at Chicago

15

LEPTON+JETS CHANNEL (BOOSTED) len j $L = 5.00 \text{ fb}^{-1}$ **CMS EXO-11-093**

reconstruct resonance with Chi2

$$\chi^2 = \left[\frac{M_{lep} - \bar{M}_{lep}}{\sigma_{M_{lep}}}\right]^2 + \left[\frac{M_{had} - \bar{M}_{had}}{\sigma_{M_{had}}}\right]^2$$

the Chi2 parameters are extracted from simulation by matching reconstructed jets to partons

 cut on Chi2 to suppress W+jets and QCD contributions

(< 1% of QCD is left after all cuts)

• use secondary vertex b-tagged jet to split events into 0-btag and 1+btag channels (60% b-tag and 2% mistag rate)

LEPTON+JETS CHANNEL (BOOSTED) (new)

CMS EXO-11-093 L = 5.00 fb⁻¹

University of Illinois at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

- reconstructed resonance mass is used as input for limit setting procedure
- re-binning is required to • cover low-statistics in the tails
- use CLs method to set the limit

LEPTON+JETS CHANNEL (BOOSTED)

CMS EXO-11-093 L = 5.00 fb⁻¹

Excluded mass region

narrow Z' mass < 1.55 TeV wide Z' mass < 1.98 TeV

University of Illinois | Samvel Khalatyan | 24th Rencontres de Blois
 at Chicago

University of Illinois Samvel Khalatyan 24th Rencontres de Blois at Chicago

CMS EXO-11-006 $L = 5.0 \text{ fb}^{-1}$ arXiv:1204.2488

- high-mass search **type I+I**:
 - two Cambridge-Aachen (R=0.8) jets
 - both jets are *top-tagged* and lie in opposite hemispheres N_{sub-jets} ≥ 3 140 < M_{jet} < 250 GeV M_{min}(jet1, jet2) > 50 GeV (jet1, jet2 are any two sub-jets)
- medium-mass search **type I + 2**:
 - three Cambridge-Aachen (R=0.8) jets:

 $P_T > 350, 200, 30 \text{ GeV}$

- reject type I+I events
- one jet is top-tagged in one hemisphere
- low- P_T and *W*-tagged jets are in the opposite hemisphere: $N_{sub-jets} = 2$ 60 < M_{jet} < 100 GeV μ < 0.4 (μ is a mass drop: mass of the heaviest sub-jet divided by W-tagged jet mass)

Jniversity of Illinois Samvel Khalatyan 24th Rencontres de Blois at Chicago

 $P_{\rm T} > 350 \, {\rm GeV}$

CMS EXO-11-006 $L = 5.0 \, fb^{-1}$ arXiv:1204.2488

- Study top-tagging efficiency in control sample: single muon and at least two jets
- Mistag rate is measured by inverting some of the top-tagging and W-tagging selections
- Extract QCD multijet from data by looking at:
 - type 1+1 events but require only one top-tagged jet
 - type 1+2 events with only W-tagged jet
 - weight events by top-tagging mistag rate efficiency

CMS EXO-11-006 $L = 5.0 \, fb^{-1}$ arXiv:1204.2488

narrow Z' mass $< 1.6 \,\text{TeV}$ wide Z' mass $< 2.0 \,\text{TeV}$ KK gluon mass $1.4 < M_{KKg} < 1.5 \text{ TeV}$

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

SUMMARY

Comparison of the expected limits between Z' resonances

	narrow Z' mass	wide Z' mass	KK gluon mass
CMS TOP-11-010	< I.I TeV		
ATLAS CONF-2011-123			< 0.8 TeV
CMS TOP-11-009	< I.3 TeV	< I.7 TeV	< I.4 TeV
ATLAS CONF-2012-029	< 0.9 TeV		< I.0 TeV
CMS EXO-11-093	< I.6 Tev	< 2.0 TeV	
CMS EXO-11-006	< I.6 TeV	< 2.0 TeV	I.4 < М _{ККg} < I.5

the limits are rounded up to one decimal places

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

narrow Z' mass

CONCLUSION

- Results on searches for resonances decaying to tt were presented
- All main channels are covered: dilepton, lepton+jets, all-hadronic
- New analysis is presented based on non-isolated leptons (CMS) EXO-11-093) and aimed at boosted resonances search
- top- and W-tagging based search is shown (CMS EXO-11-006)
- No signal peaks are observed in data
- Resonances are **excluded** in mass regions: $< 1.6 \,\text{TeV}$ narrow Z' mass wide Z' mass $< 2.0 \,\text{TeV}$ $< 1.4 \, TeV$ KK gluon mass

Samvel Khalatyan | 24th Rencontres de Blois

CONCLUSION

2012 Data are coming at high rate and ready for the analysis

3.5 Delivered integrated luminosity (fb⁻¹ 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Samvel Khalatyan | 24th Rencontres de Blois

BACKUP

LARGE HADRON COLLIDER

University of Illinois Samvel Khalatyan 24th Rencontres de Blois at Chicago

COMPACT MUON SOLENOID

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

ATLAS

University of Illinois | Samvel Khalatyan | 24th Rencontres de Blois UIC at Chicago

SM tt production and decay

University of Illinois at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

DILEPTON CHANNEL CMS TOP-II-010 L = 5.0 fb⁻¹ event yield

Sample	ee	μμ	еµ	
tī	2208.5 ± 461.1	2546.4 ± 548.4	7323.4 ± 1498.8	
$Z/\gamma * \rightarrow l\bar{l}$	405.2 ± 128.1	422.1 ± 133.5	178.9 ± 56.6	
VV	11.5 ± 1.5	15.4 ± 2.0	32.3 ± 4.2	
$W \rightarrow l\nu$	16.7 ± 23.7	0.0 ± 0.0	26.2 ± 37.2	
Single-top	105.6 ± 15.3	120.7 ± 17.5	343.4 ± 50.1	
Multijets	41.8 ± 6.9	50.1 ± 10.4	102.9 ± 14.3	
Total background	2789.4 ± 510.0	3154.7 ± 596.0	8007.0 ± 1545.6	
Observed count	2690	3098	7704	

DILEPTON CHANNEL **CMS TOP-11-010** $L = 5.0 \text{ fb}^{-1}$ control plots

University of Illinois at Chicago **Samvel Khalatyan 24th Rencontres de Blois** UIC

DILEPTON CHANNEL **CMS TOP-11-010** $L = 5.0 \text{ fb}^{-1}$ reconstructed resonance mass

University of Illinois at Chicago **Samvel Khalatyan 24th Rencontres de Blois** UIC

DILEPTON CHANNEL ATLAS-CONF-2011-123 L = 1.04 fb⁻¹

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois UIC at Chicago

high HT + ETmiss. The highest energy electron has an ET of 104 GeV, the subleading electron an ET of 35 GeV. The highest energy jet has an ET of 526 GeV, the subleading jet an IETuofe3392GeV.vTheuHTer+112506255 RI ETmiss is I 226 GeV of which 222 GeV originates from ETmiss.

LEPTON+JETS CHANNEL (ATTHRESHOLD)

$L = 4.7 \text{ fb}^{-1}$ **CMS TOP-11-009**

University of Illinois UIC at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

e+jets

LEPTON+JETS CHANNEL (ATTHRESHOLD)

$L = 4.7 \text{ fb}^{-1}$ **CMS TOP-11-009**

University of Illinois at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

mu+jets

LEPTON+JETS CHANNEL (ATTHRESHOLD) ATLAS-CONF-2012-029 $L = 2.05 \text{ fb}^{-1}$ **Expected** signal shapes

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

LEPTON+JETS CHANNEL (ATTHRESHOLD)

ATLAS-CONF-2012-029 $L = 2.05 \text{ fb}^{-1}$

University of Illinois at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

control plots

LEPTON+JETS CHANNEL (BOOSTED)

CMS EXO-11-093 L = 5.00 fb⁻¹

	electron+je	ets channel	muon+jets channel		
Sample	$N_{\rm b-tag} = 0$	$N_{\text{b-tag}} \ge 1$	$N_{\rm b-tag} = 0$	$N_{b-tag} \ge 1$	
$Z', M = 1 \text{ TeV}/c^2$	17.1	36.5	27.8	48.3	
$Z', M = 1.5 \text{TeV}/c^2$	44.7	55.4	95.9	94.4	
$Z', M = 2 \text{ TeV}/c^2$	62. 1	52.8	146.3	94.1	
$Z', M = 3 \text{ TeV}/c^2$	57.2	36.9	155.2	69.0	
Single Top	9.3	14.6	8.1	11.0	
W+jets	89.4	5.5	127.2	6.8	
Z+jets	5.6	0.0	22.0	1.5	
tt	171.6	335.8	156.5	262.1	
Total Background	276 ± 58	356 ± 50	314 ± 72	281.4 ± 34	
Data 2011	277	354	300	269	

University of Illinois Samvel Khalatyan 24th Rencontres de Blois at Chicago

event yield

LEPTON+JETS CHANNEL (BOOSTED)

CMS EXO-11-093 L = 5.00 fb⁻¹

University of Illinois UIC Samvel Khalatyan | 24th Rencontres de Blois at Chicago

topological cuts in e+jets

(plots are taken from CMS-EXO-11-092)

LEPTON+JETS CHANNEL (BOOSTED) isolation CMS EXO-11-093 L = 5.00 fb⁻¹

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

(plots are taken from CMS-EXO-11-055)

LEPTON+JETS CHANNEL (BOOSTED)

CMS EXO-11-093 L = 5.00 fb⁻¹

University of Illinois at Chicago

Samvel Khalatyan | 24th Rencontres de Blois

CMS EXO-11-006 $L = 5.0 \, fb^{-1}$ arXiv:1204.2488

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

Expected signal shapes

CMS EXO-11-006 $L = 5.0 \, fb^{-1}$ arXiv:1204.2488

University of Illinois Samvel Khalatyan | 24th Rencontres de Blois at Chicago

Mistag Rate

CMS EXO-11-006 L = 5.0 fb⁻¹ arXiv:1204.2488

University of Illinois UIC Samvel Khalatyan | 24th Rencontres de Blois at Chicago

CONCLUSION

- Results on searches for resonances decaying to tt were presented
- All main channels are covered: dilepton, lepton+jets, all-hadronic
- Resonances are **excluded** in mass regions:

	dilepton		lepton+jets (at threshold)		lepton+jets (boosted)	allhadronic (boosted)
narrow Z' mass	< I.I TeV		< I.3 TeV	< 0.9 TeV	< I.6 TeV	< I.6 TeV
wide Z' mass			< I.7 TeV		< 2.1 TeV	< 2.0 TeV
KK Gluon mass		< 0.8 TeV	< I.4 TeV	< I.0 TeV		I.4 < М _{ККg} < I.5
	CMS TOP-11-010	ATLAS CONF-11-123	CMS TOP-11-009	ATLAS CONF-12-029	CMS EXO-11-093	CMS EXO-11-006

the limits are rounded up to one decimal places

LEPTON+JETS CHANNEL (ATTHRESHOLD)

new) LEPTON+JETS CHANNEL (BOOSTED)

