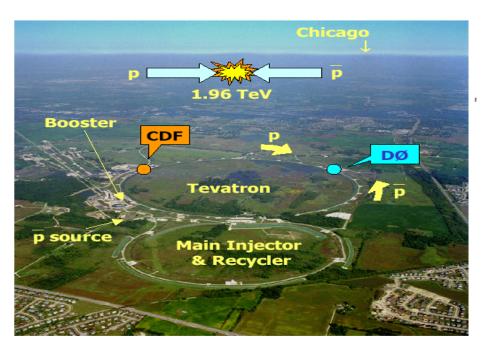
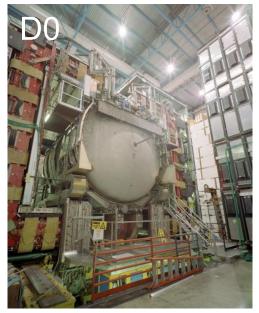


Recent Top quark Measurements at the Tevatron Cecilia E. Gerber University of Illinois-Chicago

for the CDF & D0 Collaborations

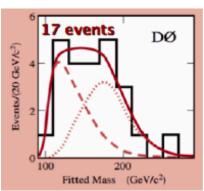

24th Recontres de Blois

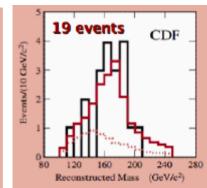

Chateau Royal de Blois, May 27-June 1, 2012


Outline

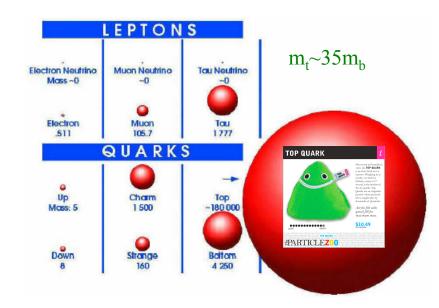
- Motivation
- Introduction to top quark production and decay
- Recent results
- Conclusions

Cecilia E. Gerber (UIC) - Blois2012


Top Quark

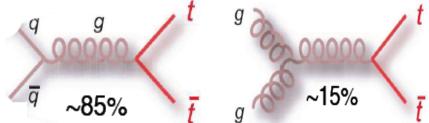

- Heaviest known elementary particle
 - Large Higgs Couplings
 - Special role in EWSB mechanisms
 - Many NP signatures decay to tops

1995: Discovered @ the Tevatron

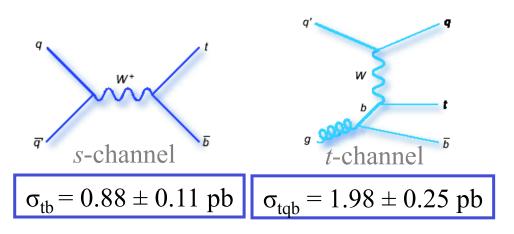

PRL 74, 2632 (1995)

PRL 74, 2626 (1995)

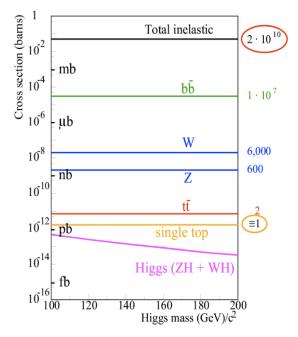
Today: thousands of events used for precision measurements & searches


- Within the Standard Model
 - Single or Pair Production
 - Electric Charge +²/₃ e
 - Short Lifetime 5x10⁻²⁵s
 - Decays before hadronization
- Successful Tevatron program
- New results complement those from LHC

Top Quark Production at the Tevatron

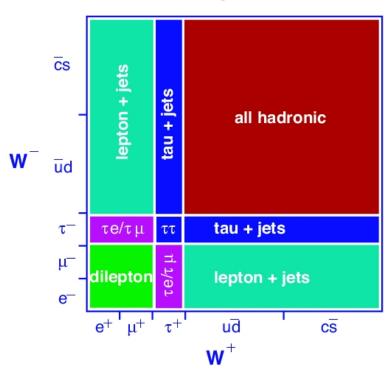

• Top quarks are mainly produced in pairs via the strong interaction

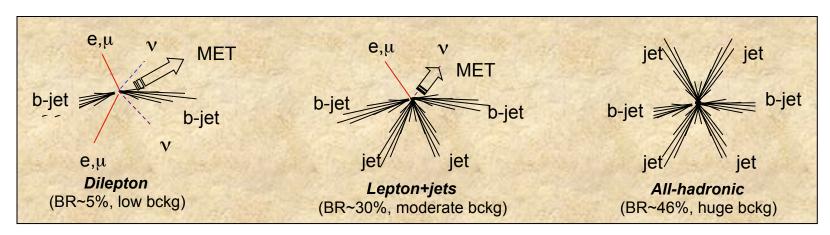
$$\sigma_{tt} = 7.067 + 0.235 - 0.262 \text{ pb}$$


Baernreuther et al. arXiv:1204.5201 m_t = 172.5 GeV

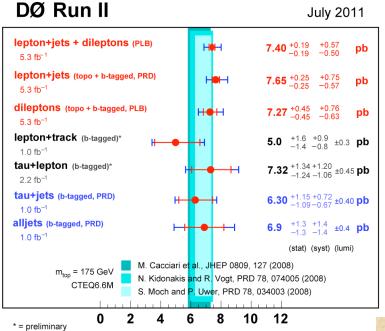
- EW Single Top production
 - Experimentally challenging due to large W+jets background in lower jet multiplicities than pair production

Kidonakis PRD 74 114012 (2006), m_t=172.5GeV Associated production tW negligible

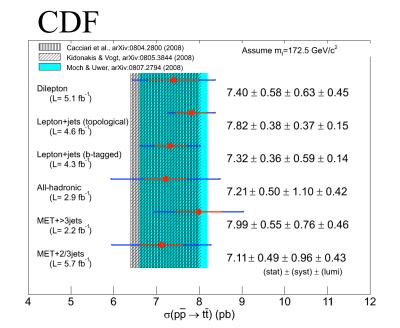


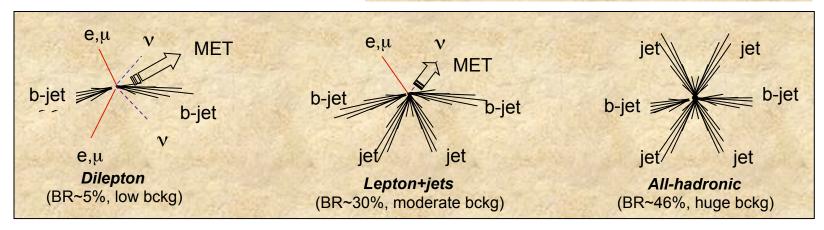


Top Quark Decay


- $m_t > m_W + m_b \Rightarrow$ dominant 2-body decay $t \rightarrow Wb$
- Assuming unitarity of 3-generation CKM matrix \Rightarrow B(t \rightarrow Wb) \sim 100%
- $\Gamma_t^{SM} \approx 1.4 \text{ GeV}$ at $m_t = 175 \text{ GeV}$
 - Top decays before top-flavored hadrons or tt-quarkonium bound states can form
 - Top spin and kinematics is transferred to the final state

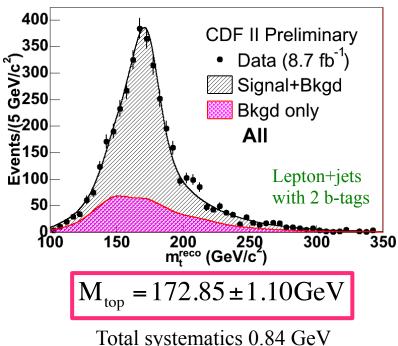
tt decay modes




Top Pair Production Cross Sections

 $\sigma(p\bar{p} \rightarrow t\bar{t} + X)$ [pb]

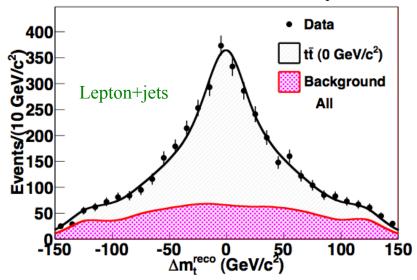
Measured in all channels except $\tau_{\text{had}}\,\tau_{\text{had}}$


red = 2011 result

blue = 2010 results

Top Quark Mass

- Fundamental parameter of the SM
 - Affects predictions via radiative corrections
 - Together with the W mass, places constraints on the Higgs mass


Single most precise measurement

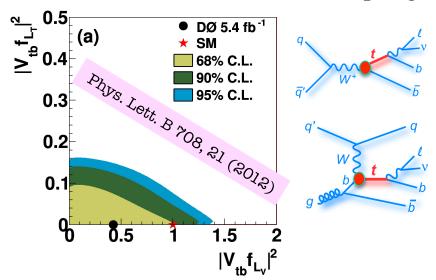
CDF/PUB/TOP/10761

- top anti-top mass difference
 - Test of CPT violation
 - Only possible to study with tops
 - Many systematics cancel in difference
 - Total systematics 0.59 GeV

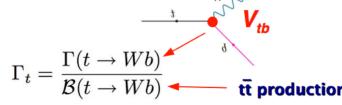
$$\Delta M_{top} = -1.95 \pm 1.26 GeV$$

CDF/PUB/TOP/10777

Studies of Single Top Production

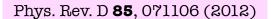

- First observed in 2009
 - 14y after pair production, 50x more data
- Probe of Wtb interaction
- Cross sections sensitive to BSM processes
- s-channel suppressed at the LHC

$$\sigma_{tb} = 1.81 \pm_{0.58}^{0.63} pb$$

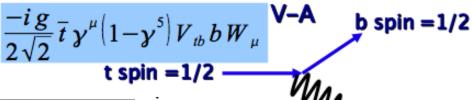

World's best s-channel x-sec

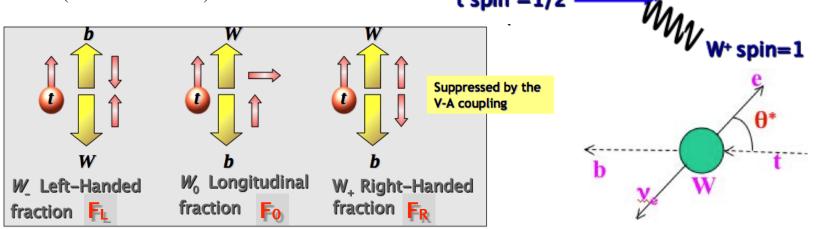
Limits on anomalous Wtb couplings

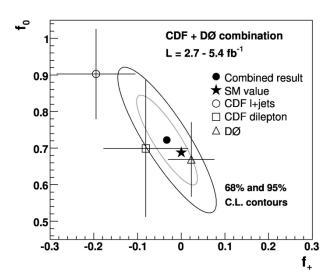
Top decay width and lifetime


Most precise

$$\Gamma_t = 2.00^{+0.47}_{-0.43} \text{GeV}$$


Phys. Rev. D 85 091104 (2012)

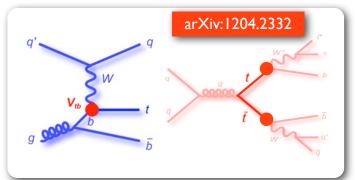

$$\tau_t = 3.29^{+0.90}_{-0.63} \times 10^{-25} \text{s}$$


W Boson Helicity Fractions

 $(2.7-5.4 \text{ fb}^{-1} \text{ of data})$

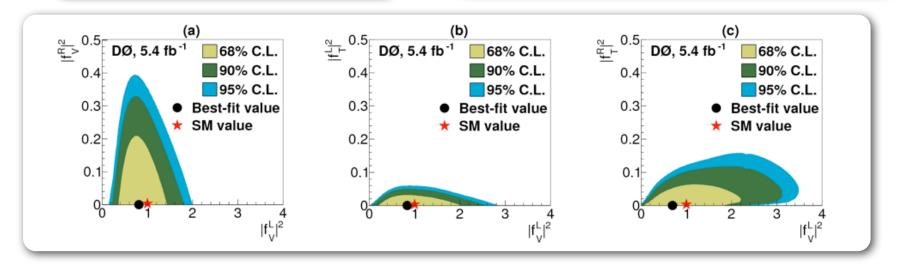
Most precise

SM prediction: $f_0 = 70\%$, $f_+ = 0$, $f_- = 30\%$

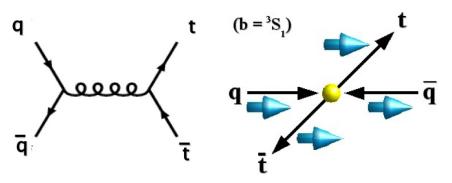

$$f_0 = 0.722 \pm 0.081$$
 $[\pm 0.062 \text{ (stat.)} \pm 0.052 \text{ (syst.)}],$
 $f_+ = -0.033 \pm 0.046$
 $[\pm 0.034 \text{ (stat.)} \pm 0.031 \text{ (syst.)}]$

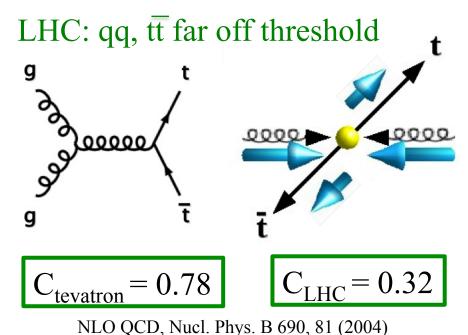
First Published Tevatron Combination in Top Physics

Anomalous Wtb Couplings

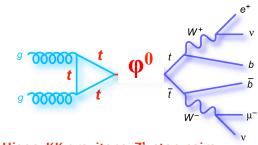

 Constrain Wtb vertex couplings by combining information from single top and W helicity analyses.

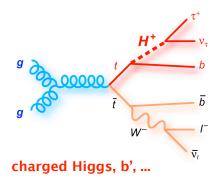
SM:
$$f_V^L = 1$$
 $f_V^R = f_T^L = f_T^R = 0$


$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_{V}^{L} P_{L} + f_{V}^{R} P_{R}) t W_{\mu}^{-}$$
$$- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_{W}} (f_{T}^{L} P_{L} + f_{T}^{R} P_{R}) t W_{\mu}^{-} + h.c.$$


Scenario	only	only	combination
	W helicity	single top	
$ f_V^R ^2$	0.62	0.89	0.30
$ f_T^L ^2$	0.14	0.07	0.05
$ f_T^R ^2$	0.18	0.18	0.12

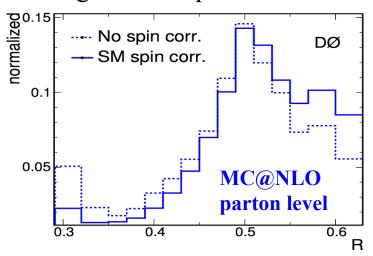
Spin Correlation Strength


Tevatron: $q\overline{q}$, $t\overline{t}$ at threshold



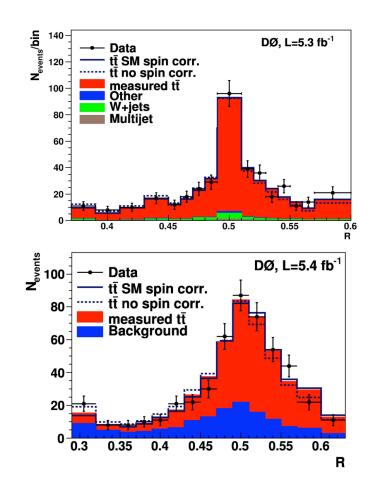
$$C = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}}$$

- Test of SM that analyzes the entire chain of production and decay
- Sensitive to BSM processes



Higgs, KK gravitons, Z', stop pairs, ...

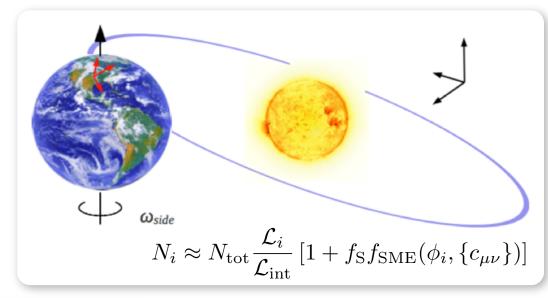
Spin Correlations

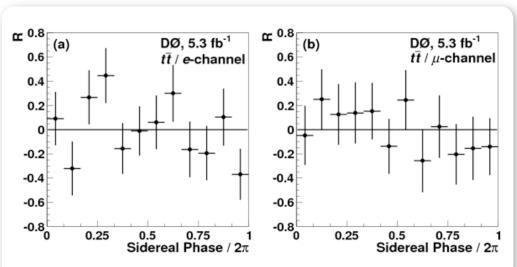

• Use ME method and build discriminant sensitive to the strength of the spin correlation

 Studied in dilepton and lepton+jet events & combined

Correlation Strength
$$C = 0.66 \pm 0.23$$
 (stat+syst)

NLO QCD C =
$$0.777^{+0.027}_{-0.042}$$


First Evidence for Spin Correlations with 3.1 σ


Phys. Rev. Lett. 108, 032004 (2012)

Search for Lorentz Invariance Violation

- Lorentz invariance violation (LIV) would affect both top pair production and decay
- Event rates would depend on sidereal time

arXiv:1203.6106, accepted by PRL

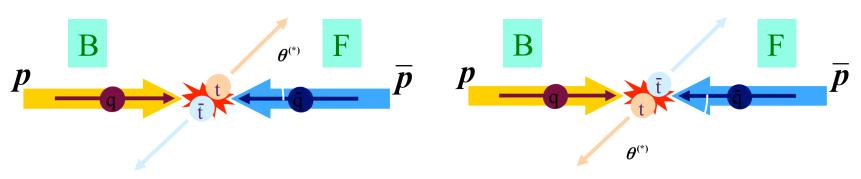
 \mathcal{L}_i : luminosity over sidereal phase ϕ_i

 $f_{
m S}$: mean signal fraction

 $f_{
m SME}$: signal fraction depend on ϕ_i

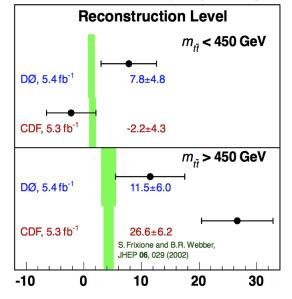
$$R_i = \frac{1}{f_{\rm S}} \left(\frac{N_i/N_{\rm tot}}{\mathcal{L}_i/\mathcal{L}_{\rm int}} - 1 \right)$$

 $c_{\mu\nu} pprox 0$ (consistent SM)

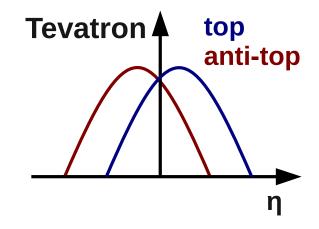

20 years of Top Studies...

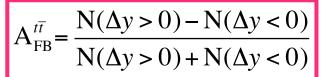
Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)
$\sigma_{t\bar{t}}$ (for $M_t = 172.5 \text{ GeV}$)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory})$ pb	$7.46^{+0.48}_{-0.67} \text{ pb}$	up to 4.6
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6
$\sigma_{\mathbf{tbq}} \text{ (for } M_t = 172.5 \text{ GeV)}$	CDF: $0.8 \pm 0.4 \text{ pb } (M_t = 175 \text{ GeV})$	$2.26 \pm 0.12~\mathrm{pb}$	3.2
	D0: $2.90 \pm 0.59 \text{ pb}$		5.4
$\sigma_{\mathbf{tb}} \text{ (for } M_t = 172.5 \text{ GeV)}$	CDF: $1.8^{+0.7}_{-0.5}$ pb $(M_t = 175 \text{ GeV})$	$1.04 \pm 0.04~\mathrm{pb}$	3.2
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3
	D0: 0.196 ± 0.065		5.4
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4
M_t	Tev: $173.2 \pm 0.9 \text{ GeV}$	-	up to 5.8
$\sigma_{tar{t}\gamma}$	CDF: $0.18 \pm 0.08 \text{ pb}$	$0.17 \pm 0.03~\mathrm{pb}$	6.0
$ V_{tb} $	CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	1	3.2
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2
	D0: 0.90 ± 0.04		5.4
$\sigma(gg o tar t)/\sigma(par p o tar t)$	CDF: 0.07 ^{+0.15} _{-0.07}	0.18	1
$M_t-M_{ar t}$	CDF: $-3.3 \pm 1.4({\rm stat}) \pm 1.0({\rm syst}) \; {\rm GeV}$	0	5.6
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6
	D0: 4/3 excluded @ 92% CL		0.37
Γ_t	CDF: < 7.6 GeV @ 95% CL	$1.26~{ m GeV}$	4.3
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3

20 years of Top Studies...


Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)
$\sigma_{t\bar{t}}$ (for $M_t = 172.5 \text{ GeV}$)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory})$ pb	$7.46^{+0.48}_{-0.67} \text{ pb}$	up to 4.6
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6
$\sigma_{\mathbf{tbq}} \text{ (for } M_t = 172.5 \text{ GeV)}$	CDF: $0.8 \pm 0.4 \text{ pb } (M_t = 175 \text{ GeV})$	$2.26 \pm 0.12~\mathrm{pb}$	3.2
	D0: $2.90 \pm 0.59 \text{ pb}$	4	460
$\sigma_{\mathbf{tb}} \text{ (for } M_t = 172.5 \text{ GeV)}$	CDF: $1.8^{+0.7}_{-0.5}$ pb $(M_t = 175 \text{ GeV})$	$1.04 \pm 0.04 \text{ pb}$	
	D0: 0.68 ^{+0.38} _{-0.35} pb	~ 1111	5.4
Charge asymmetry	CDF: 0.158 ± 0.074	PS ()	5.3
	D0: 0.196 ± 0.065		5.4
spin correlation	CDF: $0.72 \pm 0.64 (\text{stat}) \pm 0.26 (\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4
M_t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8
$\sigma_{tar{t}\gamma}$	CDF: 0.18 ± Qb	$0.17 \pm 0.03~\mathrm{pb}$	6.0
$ V_{tb} $	CDF: $ b = 0.11$ 11 at + sys) ± 0.07 (theory)	1	3.2
	D0: 1.02 1.02		5.4
$R = B(t \to Wb)/B(t \to Wq)$	√PF 0 95% CL	1	0.2
$ \uparrow $	0.90 ± 0.04		5.4
$\sigma(gg \to t\bar{t})/\sigma(p\bar{p} - t\bar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1
$M_t-M_{ar{t}}$	CDF: $-3.3 \pm 1.4 ({\rm stat}) \pm 1.0 ({\rm syst}) \ {\rm GeV}$	0	5.6
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
W lici Caction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4
- Jurge	CDF: -4/3 excluded @ 95% CL	2/3	5.6
	D0: 4/3 excluded @ 92% CL		0.37
$\Gamma_{m{t}}$	CDF: < 7.6 GeV @ 95% CL	$1.26~{ m GeV}$	4.3
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3

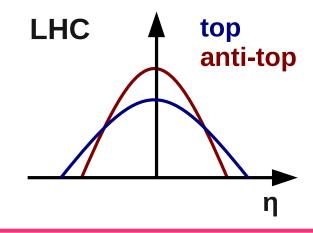
One Surprise: Top FB Asymmetry


- Top quarks are preferentially emitted in the direction of the incoming quark, anti-top in the direction of the incoming anti-quark.
 - No asymmetry in gg production.
- SM predicts small (~6.6%) asymmetry from interference between ISR and FSR and between LO and box diagrams
- BSM production mechanisms that exchange new bosons could enhance the FB asymmetry
- Inclusive asymmetries measured using $\sim 5 \, \text{fb}^{-1}$ of Tevatron data exceed SM predictions by 1.5-2 σ
 - Larger mass and rapidity dependence than predicted by the SM


Forward-Backward Top Asymmetry, %

Definitions

Tevatron: p \overline{p} is CP-eigenstate LHC: q \overline{q} fraction only 15% Forward-Backward Asymmetry more significant at the Tevatron

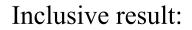


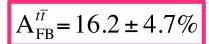
$$\Delta y = y_t - y_{\overline{t}}$$

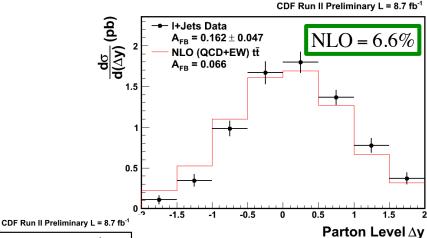
$$A_{FB}^{t\bar{t}} \approx 6.6\%$$

NLO POWHEG with EW corrections

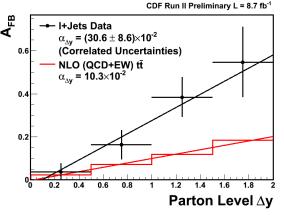
$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

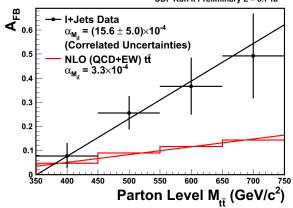

$$\Delta |y| = |y_t| - |y_{\overline{t}}|$$


$$A_C \approx 1\%$$

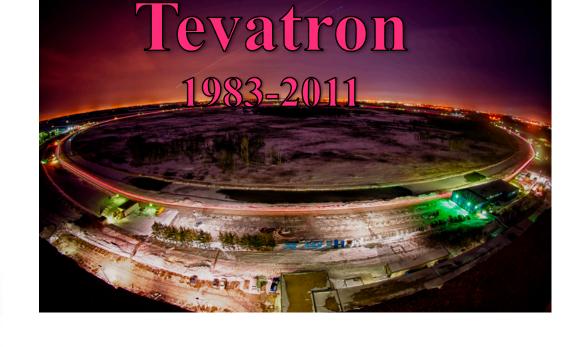

A_{FR}: Parton Level Results

- Analyze 8.7fb⁻¹
- NLO Powheg w/EW corrections for signal modeling
- Correct for acceptance and detector resolution – parton level results can be compared directly to theory


- parton level ared directly



	Data	NLO
$egin{aligned} A_{\mathrm{FB}}\mathrm{vs}\ M_{\mathrm{tt}} \end{aligned}$	(15.6±5.0) ×10 ⁻⁴	(3.3) ×10 ⁻⁴
$egin{aligned} A_{FB} vs \ \Delta y \end{aligned}$	(30.6±8.6) ×10 ⁻²	(10.3) ×10 ⁻²



Best fit slope to data compared to NLO

p-value <1% (Probability of background to fluctuate to data)

Conclusions

- Tevatron had a successful (Standard Model) top quark program
 - Observation
 - Precision Measurements
 - BSM Exclusions
- Legacy results on the full dataset are most precise or complement LHC
- LHC opens a new era of high statistics and BSM discoveries

