

The NA62 experiment at CERN

E. Cortina

Centre for Cosmology, Particle Physics and Phenomenology (CP3) Louvain-la-Neuve Belgium

On behalf of the NA62 collaboration

May 30, 2012

< ロ > < 同 > < 回 > < 回 > < 回 > <

Rare Kaon Decays program at CERN

Phase I (2007-2008) : Lepton Universality

Measurement of R_K at 0.4% level

$$R_{K} = rac{\Gamma(K^{\pm}
ightarrow e^{\pm}
u)}{\Gamma(K^{\pm}
ightarrow \mu^{\pm}
u)}$$

Phase II (2012-2015) :

Detection of $\mathcal{O}(100)$ $K^+ \to \pi^+ \nu \bar{\nu}$ with a ~10% background

$$\mathsf{BR}_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$$

• In common : Decay in Flight Technique

• Different : Beam line and experimental setup

E. Cortina (CP3)

イロト 不得下 イヨト イヨト 二日

NA62 : Rare Kaon Decays at SPS

- NA62 is a fixed target experiment at SPS
 - High intensity proton beam
 - ▶ 400 GeV/c on a Be target
- Well known beam line
 - Instrumentation
 - Simulation tools
- Consolidated collaboration
 - NA48, NA31
- Inherited equipment from NA48

イロト イポト イヨト イヨト

- Decay channel
- Calorimeters at the end of the decay channel

 K^{\pm} experiments : Decay in flight vs. Decay at rest

K^{\pm} decay at rest

- Low energy photons
- Hermeticity
- Compact experiments
- ANL and BNL
- protons ${\sim}25~{\rm GeV}$

 K^{\pm} decay in flight

- Energetic photons
- Boosted events
- Long baseline experiments
- CERN
- protons ~400 GeV
- $K^{\pm} \sim$ 75 GeV

E. Cortina (CP3)

Rare Kaon Decays

- Rare decays provide an unique tool to test NP
- Golden modes : FCNC and helicity suppressed decays
 - Short distance dynamics constitutes the dominant contribution of the decay amplitude. New Physics may appear in loops.
 - Long distance contributions (low energy QCD) can obscure New Physics effects
- If long distance contributions under control \rightarrow Excellent SM predictions $\mathcal{O}(\text{few}\%)$
- NP contributions accessible experimentally due to the suppression of the SM value

・ロト ・ 一 ・ ・ ヨト ・ ヨト

NA62 Phase I (2007-2008) : Lepton Universality

Measurement of R_K at 0.4% level

$$R_{\mathcal{K}} = \frac{\Gamma(\mathcal{K}^{\pm} \to e^{\pm}\nu)}{\Gamma(\mathcal{K}^{\pm} \to \mu^{\pm}\nu)}$$

NA62 Phase-I : Beam line and detector

- Magnetic Spectrometer
 - ► 4 view Drift chambers ΔP/P = 0.47% + 0.020%P[GeV/c]
- Hodoscope
 - Fast trigger, $\sigma_t = 150$ ps
- Electromagnetic calorimeter (LKr)
 - ► High granularity and homogeneity $\sigma_X = \sigma_Y = 4.2 \text{mm}/E^{1/2} + 0.6 \text{mm (GeV)}$ $\sigma_E/E = 3.2\%E^{1/2} + 9\%/E + 0.42\%$ (GeV)

Narrow momentum K[±] beams :
 P_κ = 74 GeV/c, δP_κ/P_κ ~ 1%

イロト イポト イヨト イヨト

 $R_{K} = K_{e2}/K_{\mu 2}$ in the SM

$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm}\nu)}{\Gamma(K^{\pm} \to \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right) \left(1 + \delta R_{k}^{rad}\right)$$

- K_{e2} is helicity suppressed
- Individual decays note usable because of hadronic incertitudes
- Cancellation in the ratio
- Excellent sub-permille accuracy in the SM

$${\it R}_{\it K}^{\it SM}=(2.477\pm0.001)\times10^{-5}$$

Cirigliano, Rosell, PRL 99 (2007) 231801

$$rac{\delta R_K}{R_K} \sim 0.04\%$$

イロト 不得 トイヨト イヨト

... and Beyond

• 2HDM : presence of extra charged Higgs introduces LFV at one-loop level

$$R_K^{LFV} = R_K^{SM} \left[1 + \left(rac{m_K^4}{m_{H^\pm}^4}
ight) \left(rac{m_ au^2}{m_e^2}
ight) |\Delta_{13}|^2 an^6 eta
ight]$$

Masiero, Paradisi, Petronzio, PRD 74 (2006) 011701; JHEP 0811 (2008) 042

$$\left. \begin{array}{l} \Delta_{13} = 5 \times 10^{-4} \\ \tan \beta = 40 \\ m_{H} = 500 {\rm GeV/c^2} \end{array} \right\} \quad \rightarrow \quad R_{K}^{LFV} = R_{K}^{SM} (1 + 0.013)$$

- Limited by recent $B_s \to \mu^+ \mu^-$ measurements (Fonseca, Romao, Teixeira, arXiv :1205.1411)
- Sensitive to SM extensions with 4^{th} generation

(Lacker, Menzel, JHEP 1007 (2010) 006)

E. Cortina (CP3)

9 / 27

NA62-I : R_K measurement

- K_{e2} and $K_{\mu 2}$ measured simultaneously
 - Independent of kaon flux
 - Cancellation of many systematic effects
- Counting experiment in 10 momentum bins

$$R_{K} = \frac{1}{D} \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2}) \times f_{\mu} \times \varepsilon(K_{\mu 2})}{A(K_{e2}) \times f_{e} \times \varepsilon(K_{e2})} \frac{1}{f_{LKR}}$$

$N(K_{e2}), N(K_{\mu 2})$	number of selected $K_{\ell 2}$ candidates
$N(K_{e2}), N(K_{\mu 2})$	number of background events
$A(K_{e2}, A(K_{\mu 2}))$	geometric acceptance (MC)
f_e, f_μ	particle ID efficiencies (data)
$\varepsilon(K_{e2}), \varepsilon(K_{\mu 2})$	trigger efficiency
$f_{LKR} = 0.9980(3)$	global LKR readout efficiency
D = 150	downscaling of the $K_{\mu 2}$ trigger

イロト 不得下 イヨト イヨト 二日

K_{e2} and $K_{\mu 2}$ selection

Kinematic separation

- Missing mass $M_{miss}^2 = (P_K P_\ell)^2$ P_K : average measured with $K_{3\pi}$ decays
- Sufficient $K_{e2}/K_{\mu 2}$ separation at $P_{track} < 30 \text{ GeV/c}$

Lepton identification

- E/P = LKR energy deposition/track momentum
 0.95<E/P<1.1 for electrons
 - $E/P{<}0.85$ for muons
- μ^\pm suppression in the e^\pm sample $\sim 10^6$

イロト 不得 トイヨト イヨト

R_K result : Full data sample

$$R_{\mathcal{K}} = (2.488 \pm 0.07_{stat} \pm 0.007_{syst}) \times 10^{-5}$$
$$= (2.488 \pm 0.010) \times 10^{-5}$$

Partial (40% data set : PLB 698 (2011) 105 Full data set : paper to be submitted in summer 2012

3

R_K world average

World Average	$R_K imes 10^5$	Precision
PDG 2008	2.447 ± 0.109	4.5%
PDG 2010	2.493 ± 0.031	1.3%
July 2011	2.488 ± 0.009	0.4%
SM	2.477 ± 0.001	0.04%

E. Cortina (CP3)

3

イロト イポト イヨト イヨト

NA62 Phase II (2012-2015) :

Detection of ${\cal O}(100)$ ${\cal K}^+ o \pi^+
u ar{
u}$ with a ${\sim}10\%$ background

$${\sf BR}_{{\it SM}}({\it K}^+ o \pi^+
u ar
u) = (7.81 \pm 0.75 \pm 0.29) imes 10^{-11}$$

 $K \to \pi \nu \bar{\nu}$

• FCNC processes described with penguin and box diagrams

• With the highest CKM suppression

$$\begin{array}{ccc} b \rightarrow s & b \rightarrow d & s \rightarrow d \\ |V_{tb}^* V_{ts}| \sim \lambda^2 & |V_{tb}^* V_{td}| \sim \lambda^3 & |V_{ts}^* V_{td}| \sim \lambda^5 \end{array}$$

- $K_{\ell 3}$ can be used to compute the hadronic matrix element
- $\bullet\,$ SM predictions with a ${\sim}10\%$ precision. Error dominated by CKM parametrization

$$\begin{array}{rcl} BR(K^+ \to \pi^+ \nu \bar{\nu}) &=& (7.81 \pm 0.75 \pm 0.29) \times 10^{-11} \\ BR(K^0 \to \pi^0 \nu \bar{\nu}) &=& (2.43 \pm 0.39 \pm 0.06) \times 10^{-11} \end{array}$$

Brod et al., PRD83 (2011) 034030

イロト 不得下 イヨト イヨト

$K \to \pi \nu \bar{\nu}$

• $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ allows the measurement of $|V_{td}|$ independently form $B - \bar{B}$ $\delta BR/BR = 10\% \rightarrow \delta |V_{td}|/|V_{td}| = 7\%$

• Measurement of both branching rations will allow an independent measurement of $\sin 2\beta$

Experimental situation : far from theory precision

 $\begin{array}{lll} BR(K^+ \to \pi^+ \nu \bar{\nu}) &=& (17.3 \ ^{+11.5}_{-10.5} \) \times 10^{-11} \\ BR(K^0 \to \pi^0 \nu \bar{\nu}) &<& 2.6 \ \times 10^{-8} \end{array}$

E787/E949 (BNL) PRL 101 (2008) 191802 E391a (KEK) PRD 81 (2010) 072004

イロト 不得下 イヨト イヨト 二日

 $K \rightarrow \pi \nu \bar{\nu}$ and New Physics

Mescia, Smith (Flavianet)

Rencontres de Blois 2012

3

・ロト ・四ト ・ヨト ・ヨト

NA62 Phase II : beam and detector

- SPS primary protons @ 400 GeV/c
- 75 GeV/c hadron bean (p/ π/K), $\Delta P/P \sim 1\%$
- 750 MHz \rightarrow 50 MHz Kaons (6%) \rightarrow 6 MHz decays
- 4.8×10^{12} kaon decays per year

NA62 : Decay signature and requirements

- High momentum K^+ to improve rejection
 - Pion id in (15-35 GeV) \rightarrow >40 GeV missing energy.
 - Particles with E>40 GeV cannot be missed
- 1. Precise timing $\mathcal{O}(100 \text{ ps})$

I

- Associate decayed and incoming K
- 2. Kinematical rejection : $\mathcal{O}(10^{-5})$
 - Two spectrometers : GTK for kaons and Straw for pions

$$m_{miss}^2 \simeq m_K^2 \left(1 - \frac{|P_{\pi}|}{|P_{K}|} \right) + m_{\pi}^2 \left(1 - \frac{|P_{K}|}{|P_{\pi}|} \right) - |P_{K}||P_{\pi}|\theta_{\pi K}^2$$

$$\frac{P_{\pi}}{P_{\nu}} \theta_{\pi K}$$

イロト 不得下 イヨト イヨト 二日

Kinematical rejection

- 92% of background kinematically constrained
- $K^+ \to \pi^+ \pi^0$ splits signal region
- Rejection power : $\sim 10^4$ for $K^+ \rightarrow \pi^+ \pi^0$ $\sim 10^5$ for $K^+ \rightarrow \mu^+ \nu$

- 8% of Kaon decays
- Hadronic interactions in GTK
 Beam gas in decay volume
- Needed particle id and photon and muon vetoes

イロト 不得 トイヨト イヨト

NA62 : Decay signature and requirements

3. Performant vetoes

- ▶ Photon vetoes : LKR,LAV and SAC. Radiative decays and $K^+ \rightarrow \pi^+ \pi^0$ ~ 10⁸ rejection
- Muon vetoes :

 ${\cal K}^+ \to \mu^+ \nu \sim 10^{11}$ rejection. No single detector can do this

4. Particle identification

- K/π with CEDAR.
- π/μ with RICH

NA62 sensitivity

Signal	45 events/year
$K^+ o \pi^+ \pi^0$	4.3%
$K^+ ightarrow \mu^+ u$	2.2%
$K^+ ightarrow 3$ charged tracks	<4.5%
$K^+ ightarrow \pi^+ \pi^0 \gamma$	$\sim 2\%$
$K^+ \to \mu^+ \nu \gamma$	$\sim 0.7\%$
Total	<13.5%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Summary and Outlook

- NA62 is developing a full experimental program in rare kaon decays
- Phase I (2007-2008) :
 - Most precise measurement of R_K performed
 - In agreement with SM
- Phase II (2012-) :
 - Measurement of the rare decay $K^+
 ightarrow \pi^+
 u ar{
 u}$
 - Detector and beam line under construction
 - Dry run in July 2012
 - First technical run in October 2012
- Experimental program is NOT reduced to one channel
 - Large number of K decays available
 - ► Foreseen dedicated runs to study radiative decays, semileptonic decays, forbidden decays
- Long term goal : $K^0
 ightarrow \pi^0
 u ar{
 u}$

SPARES

E. Cortina (CP3)

24 / 27

$K_{\mu 2}$ background on K_{e2}

- Main background source for K_{e2} are muon catastrophic energy loss in LKR
 - Emission of energetic bremsstrahlung photons
 - $P_{\mu e} \sim 3 imes 10^{-6}
 ightarrow P_{\mu e}/R_K \sim 10\%$
- Solution : Direct measurement of $P_{\mu e}$
- ▶ Lead wall (9.2 X₀) in front of LKR
- Suppression of electron cont. from $\mu
 ightarrow e$
- Tracks with p > 30 GeV/c + E/P > 0.95 traversing the wall are pure catastrophic bremsstrahlung
- P_{µe} modified by Pb wall (ionization loss + bremsstrahlung)
 Correction evaluated with simulation

イロト 不得下 イヨト イヨト 二日

145.958 $K^{\pm} \rightarrow e^{\pm}\nu$ candidates Background : B/(S+B) = (10.95 \pm 0.27)% Electron Id. eff : (99.28 \pm 0.05)%

Main sources	B/(S+B)
$K_{\mu 2}$	$(5.64 \pm 0.20)\%$
$K_{\mu 2}(\mu ightarrow e)$	$(0.26 \pm 0.03)\%$
$K_{e2\gamma}(SD^+)$	$(2.60 \pm 0.11)\%$
Beam halo	$(2.11 \pm 0.09)\%$
Total	$(10.95 \pm 0.27)\%$

E. Cortina (CP3)

42.817 M (pre-scaled) $K^{\pm} \rightarrow \mu^{\pm}\nu$ candidates Background : B/(S+B) = (0.50± 0.01)% background dominated by muon halo

3

イロト イポト イヨト イヨト