Results on QCD jet production at ATLAS and CMS

Christopher Meyer on behalf of the ATLAS and CMS collaborations

24th Rencontres de Blois Particle Physics and Cosmology May 30, 2012

Jets at the LHC

- Jets serve as proxy to final state partons
 - ATLAS uses a calorimeter with fine longitudinal segmentation, building jets from calorimeter clusters
 - CMS uses particle flow, building jets out of particles composed of information from several subdetectors

Jets at the LHC

- Most measurements use the anti- k_{τ} clustering algorithm
 - Infrared safe, idealized cone algorithm
 - Radius parameter *R* determines size of jet
 - $0.4 \le R \le 0.7$ used in most analyses
 - **R** \geq 1.0 used for jet substructure, boosted objects

Jet performance

- Jet energy calibration for 2010 derived using Monte Carlo simulation
 - Checked using data driven (jet-jet, photon-jet, etc...) techniques
- Uncertainty on jet energy calibration often dominates measurements
 - Increases as rapidity *y* increases
- 2011 uncertainty will show large decrease (expected soon)

Inclusive jet p_{τ} cross section

- Measure inclusive jet p_{τ} spectra in bins of |y|
- 2010 measured jets with $20 < p_{\tau} < 1500$ GeV and |y| < 4.4

Inclusive jet p_{τ} cross section

- Generally good agreement seen
- Looking at |y| > 2.1 see tension between data, theory

Inclusive jet p_{τ} cross section

- 2011 increased luminosity, measured out to $p_{\tau} \sim 2 \text{ TeV}$
- Ratio with NLOJET++ theory calculation shown below
- Good agreement seen across large kinematic range
- Theory uncertainty dominated by PDF at large p_T

Dijet mass cross section

- Dijet mass m_{12} measurement in bins of $y^* = |y_1 - y_2|/2$
- Ratio with NLOJET++ theory calculation
- POWHEG (NLO matrix element + parton shower)
- Negative trend in data emerging at high m₁₂, large y*
 - NLOJET++ larger than data
 - POWHEG+PYTHIA shows best shape agreement

[<u>ATLAS-CONF-2012-021</u>]

Central + forward dijet systems

- Probe QCD for incoming partons with different momentum fraction $x_1 \ll x_2$
- Require one central jet (|η| < 2.8), one forward jet (3.2 < |η| < 4.7)
- Use highest p_{τ} jet in each region for dijet system
- Ratio of jet p_{τ} spectra, PYTHIA / data

n = 3.0

forward

central

Central + forward dijet systems

- HERWIG describes this observable better
 - Uses an angular ordering for parton showering Ο
 - POWHEG+HERWIG shows normalization difference similar to \bigcirc **POWHEG+PYTHIA**

Inclusive / exclusive dijet samples

- Sensitive to resummation of large log(1/x) terms (BFKL evolution)
- R^{incl} = inclusive ($N \ge 2$ jets, all combinations) / exclusive (N = 2 jets)
- R^{MN} = most forward backward pair ($N \ge 2$ jets) / exclusive (N = 2 jets)
- PYTHIA gives best description of data

3 jet / 2 jet ratio

- Probe of next-to-leading order effects
- Ratio of events with $N \ge 3$ jets / $N \ge 2$ jets
- Measured vs. $H_{\tau} = \Sigma jet p_{\tau}$

MC/Data

Good agreement above $H_{\tau} = 500$ GeV

b-jet production

- Production of jets from b-hadrons
 - Important background for new physics searches
- Dijet mass m_{ij} shows agreement with NLO theory
- $\Delta \varphi$ dominated by back to back systems
 - Poor agreement seen for systems with radiation (smaller $\Delta \varphi$)

 $\Delta \varphi = \pi$

 $\Delta \phi < \pi$

D^{*±} production in jets

- Production of *D*^{*±} mesons in jets tests MC hadronization description
 - Important for understanding backgrounds for new physics
- Plotted vs. $z = (D^{*\pm} \text{ momentum along jet axis}) / (jet energy)$
- Best agreement seen at large $D^{*\pm}$ momentum fraction z
- Theory shows large discrepancy with data at low jet p_T

[Phys. Rev. D85 (2012) 052005]

- Useful for identifying hadronic decays of boosted heavy particles
 - Important to check parton-shower modelling in Monte Carlo
- Splitting / filtering with Cambridge-Aachen R = 1.2 jets
 Undo clustering of jet until large mass drop observed
- Robust against the effects of muliple proton-proton interactions

- Useful for identifying hadronic decays of boosted heavy particles
 - Important to check parton-shower modelling in Monte Carlo
- Splitting / filtering with Cambridge-Aachen R = 1.2 jets
 - Undo clustering of jet until large mass drop observed
- Robust against the effects of muliple proton-proton interactions

- k_t splitting scale $\sqrt{d_{ii}}$: kinematic threshold for breaking jets into subjets
- N-subjettiness: "How much does this jet look like N different subjets?"
- Monte Carlo prediction describes data well

Summary

- Theory predictions describe data well over large kinematic region
- Discrepancies seen for:
 - High p_{T} , m_{12} , and large y
 - Radiation (NLO, NNLO effects)
 - Heavy flavor fragmentation functions
- Many ongoing analyses probing these effects
 - 2010/2011 used to tune theory in previously unexplored regime
 - 2012 will bring exciting new results

Backup material

Inclusive jet cross section

Page 20

[<u>Phys.Rev.Lett.107:132001,2011</u>]

Inclusive jet cross section

[<u>ATLAS-CONF-2012-021</u>]

Azimuthal decorrelations

- Measure Δφ between highest p_T jets
- Probe of third jet activity without measuring third jet
- Data poorly described at low p_{τ} , large $\Delta \phi$

Page 22 [Phys. Rev. Lett. 106 (2011) 172002]

Rapidity gap measurement

- Gap fraction: events with no jet activity above with $p_{\tau} > Q_0$ inside dijet Δy
- POWHEG + PYTHIA describes data best
- Low Q₀ shows larger disagreement (poor modelling of soft gluon emission)

D^{*±} production in jets

• Production of *D*^{*±} mesons inside jets

• $D^{*+} \square D^0 \pi^+ \square (K^- \pi^+) \pi^+$ (and charge conugate)

- Test of fragmentation function description in generators
- Plotted by $z = (D^{*\pm} \text{ momentum along jet axis}) / (jet energy)$
- Yield extracted from mass distribution Δm
 - $\Delta m = m(K^{-} \pi^{+} \pi^{+}) m(K^{-} \pi^{+}) m(\pi^{+})$

Splitting and filtering procedure

Each stage in the clustering combines two objects j_1 and j_2 to make another object j. Use definitions $v = \frac{\min(p_{Tj1}^2, p_{Tj2}^2)}{m_j^2} \delta R_{j1,j2}^2$ and $\delta R_{j1,j2} = \sqrt{\delta y_{j1,j2}^2 + \delta \phi_{j1,j2}^2}$, where δy and $\delta \phi$ are the differences in rapidities and azimuthal angles respectively. The procedure takes a jet to be the object j and applies the following:

- 1. Undo the last clustering step of j to get j_1 and j_2 . These are ordered such that their mass has the property $m_{j1} > m_{j2}$. If j cannot be unclustered (i.e. it is a single particle) or $\delta R_{j1,j2} < 0.3$ then it is not a suitable candidate, so discard this jet.
- 2. If the splitting has $m_{j1}/m_j < \mu$ (large change in jet mass) and $v > v_{\text{cut}}$ (fairly symmetric) then continue, otherwise redefine j as j_1 and go back to step 1. Both μ and v are parameters of the algorithm.
- 3. Recluster the constituents of the jet with the Cambridge-Aachen algorithm with an R-parameter of $R_{filt} = \min(0.3, \delta R_{j1,j2}/2)$ finding n new subjets $s_1, s_2 \dots s_n$ ordered in descending $p_{\rm T}$.
- 4. Redefine the jet as the sum of subjet four-momenta $\sum_{i=1}^{\min(n,3)} s_i$.

The algorithm parameters μ and $v_{\rm cut}$ are taken as 0.67 and 0.09 respectively [19].

arXiv:1203.4606v1

k_t splitting scales: prior to final clustering of j_1 and j_2 of the jet:

 $\sqrt{d_{12}} = \min(p_{Tj1}, p_{Tj2}) \times \delta R_{j1,j2},$

N-subjettiness: Sum over all constituents *k* of the jet:

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \times \min(\delta R_{1,k}, \delta R_{2,k}, \dots, \delta R_{N,k})$$
$$d_0 = \sum_k p_{T,k} R, \qquad T_{21} = T_2 / T_1$$

"How much does this jet look like N different subjets?"

[<u>arXiv:1203.4606v1</u>]

- Splitting / filtering with Cambridge-Aachen R = 1.2 jets
 - Undo clustering of jet until large mass drop observed
- Robust against the effects of muliple proton-proton interactions

[<u>arXiv:1203.4606v1</u>]

Page 27