

Heavy ion physics with CMS and ATLAS

Niels van Eldik

Geometry

- Centrality of the collision has large impact on the physics in heavy ion collisions
- Total energy in the forward calorimeter used to define centrality bins
- For each centrality bin we can estimate geometrical parameters:
 - number of participating nucleons
 - number of binary collisions
 - event shape

Charged particle multiplicity

- ATLAS, CMS and ALICE have consistent results
- Log-scaling (seen up to RHIC energies) is ruled out
- Multiplicity as function of number of participants has the same shape as observed at RHIC energies

Particle flow

- Collective respond to the initial state geometry
 - Fourier analysis of the azimuthal angular distribution wrt to the event plane
- Strong dependance on $|\Delta\eta|$

$$\frac{dN}{d\varphi} \propto \left(1 + \sum_{n} 2v_n \cos(n[\phi - \Phi_n])\right)$$

arXiv:1203.3087

Particle flow

- ATLAS and CMS provide a full set of harmonic flow coefficients v₂-v₆ measured up to 20 GeV in momentum, centrality and rapidity
- $\bullet\,v_1$ measured by ATLAS

Factorization of v_3 works well for $|\Delta \eta| > 2$ but breaks down for smaller values due to jet production

Factorization $v_{n,n}(p_T^a, \eta^a, p_T^b, \eta^b) = v_n(p_T^a) \times v_n(p_T^b)$ requires weak eta dependence and low

Particle yields: Charged hadrons

Heavy lons

arXiv:1202.2554v1

Particle yields: Photons

- No suppression observed for photons at ATLAS and CMS
- LHC results probe much higher energy range than RHIC

Physics Letters B 710 (2012) 256-277

Wednesday, May 30, 12

Particle yields: Gauge bosons

 $R_{CP} = \frac{\left\langle N_{coll}^{periph} \right\rangle}{\left\langle N_{coll}^{centr} \right\rangle} \frac{d^2 N_{A+A}^{centr} / dy dp_T}{d^2 N_{A+A}^{periph} / dy dp_T}$

Heavy lons

central

- Decay of the Z boson into two muons provides a very clean signature even for the most central events
- Observed yields compatible with no suppression

2011 data will provide more accurate measurements

Particle yields: Upsilon

Particle yields: J/Psi

Events / (0.088 mm) ₅01 ₅01

10[±]

ШШ

Wednesday Mag 30, 12^{int = 7.28 µb}

'6 TeV

CMS PbPb $\sqrt{s_{_{NN}}}$ = 2.76 TeV

Cent. 0-100%, lyl < 2.4

bkgd + non-prompt background

1.5

Cent. 0-10%, lyl < 2.4

6.5

 $6.5 < p_{_{
m T}} < 30 \text{ GeV/c}$

data

0.5

 $l_{J/\psi}$ (mm)

0

CMS PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

total fit

 $L_{int} = 7.28 \ \mu b^{-1}$

-0.5

- Secondary vertex reconstruction allows measurement of proper time of J/Psi from Bdecays
- b-fraction measured in Pb+Pb similar to the measured fraction in PP collisions
- Both prompt and non-prompt Jpsi component show a significant suppression

 $\begin{array}{c} & & \\$

2.9

2.6

2.7 2.8

 $\sigma = 34 \text{ MeV/c}^2$

3.4 3.5

088 mm

 10^{3}

CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV

L_{int} = 7.28 μb

Cent. 0-10%, lyl < 2.4

6.5 < p_ < 30 GeV/c

3 3.1 3.2 3.3

m_{uu} (GeV/c²)

 N_{part}

150 200 250 300 350

100

50

Particle yields: Jets

$$A_{J} = \frac{E_{T,jet1} - E_{T,jet2}}{E_{T,jet1} + E_{T,jet2}}$$

- December 2010: first observation of jet suppression
- Also observed in photon + jet final state

Jet suppression: where did the energy go?

Missing $p_T^{\parallel} = \Sigma - p_T^{\text{track}} \cos(\phi_{\text{track}} - \phi_{\text{leading jet}})$

Jet suppression: where did the energy go?

Missing $p_T^{\parallel} = \Sigma - p_T^{\text{track}} \cos(\phi_{\text{track}} - \phi_{\text{leading jet}})$

Inside and outside cone tracks are unbalanced

in cone

out of cone

Jet suppression: where did the energy go?

in cone

out of cone

Missing $p_T^{\parallel} = \Sigma - p_T^{\text{track}} \cos(\phi_{\text{track}} - \phi_{\text{leading jet}})$

Inside and outside cone tracks are unbalanced

• Summing the two restores the balance

Wednesday, May 30, 12

Conclusion

- ATLAS and CMS both have very successful heavy ion programs
 - consistent results between the experiments
 - CMS published 9 papers, ATLAS 5
- Main results
 - observation of jet suppression
 - evidence of the disappearance of higher Upsilon states
 - first observation of B suppression
- High expectations for 2011 data analysis: many results will turn for 'hints' into solid measurements
 - statistics in 2011 about 20 times larger than in 2010, analyses well underway
- 2012 program: p-Pb collisions

 (GaV/c^2)

