24th Rencontres de Blois Particle Physics and Cosmology Château Royal de Blois 27.May-1.June 2012

Jet and Diffraction results from HERA

Armen Buniatyan

On behalf of the H1 and ZEUS Collaborations

Outline:

- Jet cross sections in DIS and γp and $a_s(M_z)$
- Measurements of Diffractive DIS
- Tests of diffractive PDFs with jets
- Diffractive heavy vector meson production
- Very Forward Photon production

Physics with Jets at HERA

• Measurements of jets provide a powerful ground for precision QCD test Cross section depends on: QCD matrix elements, strong coupling α_s , PDF of the proton (and the photon in case of photoproduction)

• Jets are directly sensitive to α_s and gluons already in LO: $\sigma \sim \alpha_s \cdot g(x)$

 \rightarrow extract strong coupling α_s with high precision

-> combined inclusive DIS and jet analyses help to improve constraining gluon density

Wealth of new jet data from HERA available to provide further constrains on gluon PDF at medium and high x and determine the strong coupling α_{S}

Normalised Jet Cross Sections in DIS at high Q²

H1 prel-12-031

α_s from inclusive jets in photoproduction (Q²<1 GeV²)

- 1% jet energy scale uncertainty
- large E_T^{jet} accessible
- $\boldsymbol{\cdot}$ running of $\boldsymbol{\alpha}_s$ measured in a single experiment

$$\alpha_{\rm S}({\rm M_Z}) = 0.1206 \frac{+0.0023}{-0.0022} ({\rm exp.}) \frac{+0.0042}{-0.0033} ({\rm theory})$$

Armen Buniatyan

Diffraction and Jets at HERA

Blois, May 2012

DESY-12-045

Summary on α_s from HERA jet data

 α_{s} from HERA with small experimental uncertainties. Large theory uncertainties due to the lack of higher order theory calculations

Diffraction in ep collisions

One of first HERA surprises: ~10% of DIS events have no activity in proton direction \rightarrow <u>diffractive interactions</u>

• t-channel exchange of vacuum quantum numbers

· proton survives the collision intact or dissociates to low mass state, $M_y \sim O(m_p)$

- large rapidity gap
- small t (four-momentum transfer), small x_{IP} (fraction of proton momentum); $M_X \ll W$

In diffractive DIS, $\gamma^* p \rightarrow XY$, virtual photon resolves structure of colour singlet exchange - huge progress in understanding diffraction in terms of partons

- essential for the predictions of diffractive cross sections (e.g. diffractive Higgs at LHC)
- related to non-linear evolution (low x saturation), underlying event (gap survival), confinement

Selection of diffractive events at HERA

Leading proton' measuremens scattered proton detected in 'Roman Pots' (LPS, FPS, VFPS)

- t and x_{IP} measurement
- free of p-diss. background
- acceptance/statistics low

>'Large Rapidity Gap' method (LRG)

- t is not measured, integrated over $|t| < 1 \text{ GeV}^2$
- contains some p-diss. background
- limited by syst.uncertainties related to missing proton

The methods have different systematic uncertainties

Diffraction and Jets at HERA

У

Diffractive reduced ep cross section

$$\frac{d^{4}\sigma}{d\beta dQ^{2} dx_{IP} dt} = \frac{4\pi\alpha^{2}}{\beta Q^{4}} (1 - y + \frac{y^{2}}{2}) \sigma_{r}^{D(4)} (\beta, Q^{2}, x_{IP}, t)$$

$$\beta - \text{momentum fraction of color singlet} \\ \text{carried by struck quark}$$

$$\beta - \text{momentum fraction of color singlet} \\ \sigma_{r}^{D(4)} \propto F_{2}^{D(4)} - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}^{D(4)}$$

$$\sigma_r^{D(3)} = \int \sigma_r^{D(4)} dt$$

 \rightarrow integrated over $|t| < 1 \text{ GeV}^2$ H1 prel-11-111, ZEUS prel-11-011

Proton Spectrometer data in 0.09<|t|<0.55 GeV²

rise with $Q^2 \rightarrow positive scaling$ violation up to high β

→ Reasonable agreement of H1 FPS and ZEUS LPS data in shape and normalisation

(H1 FPS norm. uncertainty ±4.5%, ZEUS LPS norm. uncertainty ±7%)

→ Combine H1 and ZEUS cross sections to extend phase space and reduce uncertainties: first combination of H1 and ZEUS diffractive data !

Combination of H1 FPS/ZEUS LPS data

A detailed look to the combined data

→Consistency between data sets

Combination method uses iterative χ^2 minimization and include full error correlations

→ Profit from different detectors: Two experiments 'calibrate' each other resulting in reduction of systematic uncertainties

<u>Combined data have ~25%</u> <u>smaller uncertainties then the</u> <u>most precise data alone</u>

Diffractive DIS measurement with Large Rapidity Gap

Contribution from proton diffractive dissociation

LRG/FPS=1.203 ± 0.019(exp) ± 0.087(norm)

- LRG and FPS data agree well
- NLO QCD (DPDF) works well for Q²>10 GeV²

Diffractive DIS measurement with Large Rapidity Gap

DESY-12-041

Comparison recent H1 and ZEUS measurements (ZEUS data corrected to same Q^2 and M_y <1.6 GeV)

ZEUS data ~10% higher than H1; shape agreement

NLO QCD + DPDF: -works well for Q²>10 GeV² -underestimate data at low Q²

Dipole model with saturation: -close to data at low Q^2 -too low at high Q^2 and β

F_L^D in Diffraction

$$\sigma_r^D \propto F_2^D - \frac{y^2}{1 + (1 - y)^2} F_L^D$$

F_L is non-zero only in higher order QCD → independent access to gluon density Access to F_L^D if measure σ_r^D at same x,Q² and different ep CM energy, i.e. different E_{p-beam} (remember: Q²=xys)

Direct measurement of $F_2{}^D$ and $F_L{}^D$

 $F_L^D > 0 ! \rightarrow agree with predictions$

Diffractive central di-jet production (with FPS)

Diffractive forward jet production (with FPS)

 \rightarrow dijet selection with DGLAP p_T ordering broken

no evidence for configurations beyond DGLAP & DPDF predictions

Diffractive Vector meson production: J/ψ

energy dependence

 $\sigma \propto W^{\delta}$

expect δ to increase from 'soft'(~0.2) to 'hard'(~0.8) regime Fast increase of cross section with energy due to gluon density in proton going to low x $\sigma \sim |xg(x,Q^2)|$

• t - dependence
$$\frac{d\sigma}{dt} \propto e^{-b|t|}$$

b is a measure of transverse size of interaction region

 $b = b_V + b_P$; $b_V = 1/(Q^2 + M_V^2)$; $b_P = 5 GeV^{-2}$

expect **b** to decrease from 'soft' (~10 GeV⁻²) to 'hard' (~5 GeV⁻²)

H1-prel-11-011

Blois, May 2012

Diffractive $\Upsilon(1S)$ photoproduction

$$b = 4.3 {+2.0 \atop -1.3}$$
 (stat.) ${+0.5 \atop -0.6}$ (syst.) GeV^{-2}

First determination of b slope for Υ (1S)

Production of very forward photons

Forward photons produced at η >7.9 (in lab frame) detected in forward neutron calorimeter at z=106m from IP. Main source of forward photons $\pi^0 \rightarrow \gamma\gamma$

forward particles are important for the tuning of hadronic interaction models of cosmic rays

Conclusions

Many new results from HERA on hadronic final states and diffraction

• Jet measurements in DIS and photoproduction provide stringent tests of QCD and proton PDFs

• Inclusion of jet data to NLO QCD fits improves precision on the determination of PDF and $\alpha_s(M_z)$. Large theory uncertainties due to missing higher order QCD calculations

•Agreement between H1 and ZEUS measurement and between the different methods used to extract diffraction. First combination of H1 and ZEUS diffractive data presented

 Diffractive DIS measurements at HERA are sensitive to the structure of color singlet exchange. Diffractive PDFs constrained from HERA are essential ingredients for the prediction of diffractive cross sections at the LHC.

• In diffractive DIS, the validity of QCD factorisation confirmed by jet measurements

 Very forward particle measurements provide important information for an understanding of proton fragmentation

HERA has a reach program that should be completed

backup

Combined α_s and PDF fit

 \bullet PDF fit of inclusive DIS data- free α_{s} leads to large uncertainty on gluon density

H1 prel-11-034 ZEUS-prel-11-001

• significant reduction of low x gluon uncertainties by including jet DIS data \rightarrow adding jet data reduces correlation of α_s and gluon PDF

 $\alpha_{s}(M_{Z})=0.1202 \pm 0.0013 \text{ (exp)} \pm 0.0007 \text{(model)} \pm 0.0012 \text{ (hadr)} +0.0045 \text{ (theory)} -0.0036 \text{ (theory)}$

F_L^D in Diffraction

DESY-11-084

Diffraction and Jets at HERA

HERA

The world's only electron/positron-proton collider at DESY, Hamburg $E_e = 27.6 \text{ GeV}$ $E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV) (total centre-of-mass energy of collision up to $\sqrt{s} \approx 320 \text{ GeV}$)

Two collider experiments: <u>H1 and ZEUS</u>

HERA- the QCD machine

H1+ZEUS: extensive and precision studies of different aspects of QCD, Heavy Flavour production, Physics Beyond the Standard Model, Diffraction,...

Armen Buniatyan

Diffraction and Jets at HERA

HERA-1: 1992 - 2000 HERA-2: 2003 - 2007

total lumi: 0.5 fb⁻¹ per experiment