Experimental studies of generalised parton distributions

Eva-Maria Kabuß,

Institut für Kernphysik, Mainz University

24th Recontres de Blois: Particle Physics and Cosmology Blois, 27.5. – 1.6.2012

- Physics motivation
- Deeply virtual Compton scattering
- Experimental results
- Future plans

bmb+f - Förderschwerpunkt COMPASS Großgeräte der physikalischen Grundlagenforschung

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Motivation

D. Mueller, X. Ji, A. Radyushkin, A. Belitsky, ... M. Burkardt, ... Interpretation in impact parameter space

transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & helicity distributions

Slide from V.D. Volker, LANL 2007

Access GPD through hard exclusive reactions

DVCS

- generalised parton distributions for quarks and gluons $H^f, E^f, \widetilde{H}^f, \widetilde{E}^f(x, \xi, t)$
- limits: q(x) = H(x, 0, 0) normal PDF $F(t) = \int dx \ H(x, \xi, t)$ elastic FF
- Factorisation for Q^2 large, $t < 1 \ {\rm GeV}^2$
- H, \widetilde{H} conserve nucleon helicity E, \widetilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions \widetilde{H} , \widetilde{E} refer to polarised distributions

• Ji's sumrule

$$J^{f} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \mathrm{d}x \ x \ \left[H^{f}(x,\xi,t) + E^{f}(x,\xi,t) \right]$$

 J^f : total angular momentum contribution of quark f

Experimental challenge

• interference of DVCS and Bethe Heitler

$$d\sigma = d\sigma^{BH} + d\sigma^{DVCS} + interference term$$

• $d\sigma^{DVCS}$ and interference term related to **Compton form factor** $\mathcal{H}(\xi, t)$

• can be used to extract **GPDs**, mainly GPD H at high energies

$$\operatorname{Im} \mathcal{H}(\xi, t) \stackrel{\operatorname{LO}}{=} H(\xi, \xi, t)$$
$$\operatorname{Re} \mathcal{H}(\xi, t) \stackrel{\operatorname{LO}}{=} \mathcal{P} \int_{-1}^{1} \mathrm{d}x \ H(x, \xi, t) \frac{1}{x - \xi}$$

• BH known, control of experiment; DVCS also $\mathrm{d}\sigma^{DVCS}/\mathrm{d}|t|$

Generalised parton distributions

Azimuthal angular dependence

- separation of DVCS and BH via ϕ dependence
- e.g. $Q^2 = 2 \operatorname{GeV}^2$, $|t| = 0.1 \operatorname{GeV}^2$

Parametrisations of GPDs

• predictions with different models

with factorisation: $H(x,\xi,t) \propto q(x)F(t)$

with Regge motivated t dependence: x-t correlation

- idea: core of fast partons, meson cloud at larger distance $H(x,0,t) \propto q(x) \exp(-B|t|)$
- Ansatz: $B = 1/2 \langle b_{\perp}^2 \rangle = B_0 + 2\alpha' \ln \frac{x_0}{x}$ (α' slope of Regge trajectory)
- valence quarks: $\alpha' \sim 1~{\rm GeV^{-2}}$ from form factors, gluons: α' small

• analysis of data

local fits to $\operatorname{Im} \mathcal{H}$, $\operatorname{Re} \mathcal{H}$ indep. (M.Guidal)

global fits: all kinematic bins at the same time, parametrisation of CFF or GPD (G.Goldstein, K.Kumericki and D.Müller)

hybrids: local/global fits (H.Moutarde)

neural networks for PDF, work started for GPDs (K.Kumericki and D. MUller)

Nucleon tomography

• GPDs allow simultaneous measurement of longitudinal momentum and transverse spatial structure

• for
$$\xi \to 0$$
: $t = -\Delta_{\perp}^2$ purely transverse and
 $q^f(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot \mathbf{b}_{\perp}} H^f(x, 0, -\Delta_{\perp}^2)$

• b_{\perp} distance to center of momentum (*b* in figure is b_{\perp})

Experiments

- JLAB:
 - DVCS cross sections, asymmetries
 - Hall A: high precision, limited kinematics
 - Hall B:
 wide kinematics, "limited" precision
 - very different systematics

• HERMES:

- beam charge (BCA) and spin (BSA) asymmetries
- transverse asymmetries
- ongoing analysis with recoil detector

• H1/ZEUS

– DVCS cross section, t dependence, beam charge asymmetries

JLAB: Hall A and Hall B

- E00-110: DVCS cross section with unpol.p target, check of factorisation
- E03-116: measurement with d target
- E07-007: "Rosenbluth" sep. of Compton amplitudes

PRL100(2008)162002

- CLAS (E01-113, E06-003): BSA in large kinematic range
- not well described by current modells
- E05-114: TSA with pol. NH₃ target

DVCS at **HERMES**

Results on BCA and BSA:

arXiV:1203.6287

combined 1996-2005 and new 2006-7 data using missing mass technique

DVCS at H1

DVCS cross section: Q^2 , W, t dependence

Nucleon tomography: t slope b related to size of nucleon at low x

Future plans: JLAB12

several experiments planned

- Hall A: E12-06-114
 - follow up of E00-110
 - $e^{\uparrow}p \longrightarrow ep\gamma$ at fixed x, several Q^2 , several beam energies
 - high precision cross section measurements for t-dependence, ${\rm Im}~{\cal H},~{\rm Re}~{\cal H}$

• Hall B: E12-06-119

- follow up of E01-113, E06-003, E05-114
- large kinematic coverage with CLAS at 11 GeV, high statistics
- extension to low and high x (0.1 < x < 0.7)
- second phase: polarised NH_3 target
- BSA (x, t, Q^2) , TSA (x, t, Q^2)
- Hall B: E12-11-003
 - using CLAS at 11 GeV plus new recoil neutron detector
 - BSA (x, t, Q^2) in large kinematic range
 - flavour separation of GPD ${\cal H}$

Future plans: COMPASS

Exclusive measurements: DVCS and HEMP

Phase 1:

 $\begin{array}{l} \text{2.5 m IH}_2 \text{ target} \\ \text{4 m long recoil detector} \end{array}$

Phase 2:

transversely pol. target with recoildetector

```
polarised CERN \mu^{\pm} beam
```

high precision beam flux and acceptance determination

trigger in <mark>large</mark> kinematic range

Target and recoil detector

Electromagnetic calorimeter ECAL0

- Shashlik modules (length about 35 cm)
- scintillator lead sandwich with 15 radiation length
- light read-out with wave length shifting fibres
- avalanche micropixel photo diodes need temp. stability $\leq 0.2K$
- test at CERN T9 beam and at muon beam

 \implies ok for GPD measurements

2009 test measurement

- result confirms expectations
- shape in ϕ determined by current photon acceptance in ECAL1/2
- $\bullet\,$ ECAL0 needed for more uniform acceptance in ϕ

 \implies clear DVCS signal observed at $Q^2 > 1$ GeV², $x_{Bj} > 0.03$

Projected results

- **Transverse imaging**: $B(x) \sim 1/2 \langle r_{\perp}^2(x) \rangle$ no model dependence
- Azimuthal dependence: $\operatorname{Re}\mathcal{H}$, $\operatorname{Im}\mathcal{H}$ comparison to different models

- GPDs are a new active field (exp. and theoret.)
- DVCS is the golden channel for GPDs in addition hard exclusive meson production
- first round of high statistics experiments at JLAB and DESY
- compelling GPD programm at JLAB12 and CERN
- $\bullet~{\rm COMPASS}$ will fill the gap between H1/ZEUS and JLAB/HERMES
 - phase 1: study of GPD H with unpolarised proton target
 - phase 2: study of GPD E with transversely polarised NH₃
 - dress rehearsal for phase 1: this autumn

Deeply virtual meson production

$$H_{\rho^0} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} H^u + \frac{1}{3} H^d + \frac{3}{8} H^g \right), \quad H_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} H^u - \frac{1}{3} H^d + \frac{1}{8} H^g \right), \quad H_{\phi} = -\frac{1}{3} H^s - \frac{1}{8} H^g$$

• cross section measurement: $\implies \rho: \omega: \phi \approx 9: 1: 2$ at large Q^2

Vector meson production $(\rho, \omega, \Phi) \Longrightarrow H, E$ Pseudo-scalar production $(\pi, \eta, \dots) \Longrightarrow \widetilde{H}, \widetilde{E}$

• transversely pol. target asymmetries: constraint of E/H

$$A_{UT}(\rho^0) \propto \sqrt{|-t'|} \operatorname{Im}(\mathcal{E}^*\mathcal{H})/|\mathcal{H}|^2$$

larger effects expected for $\omega\text{, }\rho^+$

A_{CS,T _}

-0.4

-0.6

 $\mathcal{D}_{\alpha\alpha} = =$

Towards GPD E

measurements with transversely polarised target

$$\mathcal{L}_{CS,T} = \operatorname{do}_{T}(\mu^{-r}) \operatorname{do}_{T}(\mu^{-r})$$

$$\lim_{X \to \infty} \operatorname{Sin}(\phi - \phi_{S})(c_{0T}^{I} + c_{1T}^{I} \cos \phi)$$

$$c_{1T}^{I} \propto \operatorname{Im}\left((2 - x) F_{1} \mathcal{E} - 4 \frac{1 - x}{2 - x} F_{2} \mathcal{H}\right)$$
projections with 2 years of data
$$\varepsilon_{global} = 10\%$$
1.2 m pol. NH₃
target (f=0.26)

 $d\sigma_{\pi}(u^{+\downarrow}) = d\sigma_{\pi}(u^{-\uparrow})$

