Heavy Flavour Production and Spectroscopy at LHCb

Giulia Manca (on behalf of the LHCb Collaboration) Universita` degli Studi di Cagliari & I.N.F.N.

Outline

- The LHCb Detector
- Theory and motivation
- Selected results
 - B hadrons
 - Quarkonium
 - Exotic spectroscopy

LHC and LHCb

Uncertainty on Luminosity in these analyses : 3.5% (<u>J. Instrum. 7 (2012) P01010</u>) pp collider : 2010-2011:

● @ √s = 7 TeV
● L = 40 pb⁻¹ - 1.1 fb⁻¹

The LHCb detector JINST 3 (2008) S08005 **η=1.5** Muon Angular **RICH** Vertex System acceptance : Detectors Locator 10<0<300 mrad **VELO η=7** P p LHCb MC pp collision √s = 7 TeV **Point** θ, [rad] ³ 6 θ**, [rad]** 20 m 10 m Tracking System $\sigma_{\rm hb}$ =0.3 mb, Calorimeters 25% in acceptance

Trigger : three levels, first hardware, two software

- Performance numbers relevant to these analyses:
 - Charged tracks $\Delta p/p = 0.35$ % 0.55%, $\sigma(m)=10-25$ MeV/c²
 - ECAL $\sigma(E)/E=$ 10% (E/GeV)^{-1/2} \oplus 1 %
 - Muon ID: $\varepsilon(\mu \rightarrow \mu) = 97\%$, mis-ID rate $(\pi \rightarrow \mu) = 1-3\%$
 - Vertexing: proper time resolution 30-50 fs

possibility to reverse field polarity to check for detector

Heavy Flavour Physics at LHCb

Heavy flavour rates high at LHCb

 $\sigma(c\overline{c})_{2 < y < 6} = 1742 \pm 267 \quad \mu b \qquad \text{(LHCb-CONF-2010-013)}$ $\sigma(b\overline{b})_{2 < y < 6} = 75.3 \pm 5.4 \pm 13.0 \quad \mu b \qquad \text{(Phys.Lett.B 694 (2010), 209)}$

- Quarkonium and B-hadrons production processes are powerful tests of perturbative and non-perturbative QCD models, exotic spectroscopy sheds light on underlying model
- Due to the unique coverage of LHCb, results are complementary to Atlas and CMS and essential for a uniform picture

B hadrons

JHEP04(2012)093

B[±] production

- ➡ First B[±] production tests QCD@NLO
- Cross section measurement:
 - 35 pb⁻¹ data-> ~9k B[±] signal events
 - $\sigma(pp \rightarrow B^{\pm}X)$ and $d\sigma/dp_{T}$ in range 2 < y < 4.5 and 0 < p_{T} < 15 GeV/c
 - Main systematics: tracking (4%) and muon ID (2.5%) efficiencies
- Compared to FONLL prediction

(Fixed Order plus Next-to-Leading Logarithms, M.Cacciari et. al., JHEP 05 (1998) 007)

- Assumed $f_{b \to B\pm} = 40.1 \pm 1.3\%$ (PDG)
- Uncertainties: b mass, CTEQ6.6, scales.

→
$$\sigma$$
 (B[±], 2.0 < y < 4.5, p_T<15 GeV/c) =
41.4 ± 1.5_{stat} ± 3.1_{syst} μ b

First measurement of B production in forward region!! Being updated with more luminosity & including B_s and B⁰

30.05.2012

G.Manca, Rencontres de Blois

B** observation

LHCb-CONF-2011-053

B** observation

➡ The measured Q values are translated into masses:

$$\begin{array}{lll} M_{B_{s1}^{0}} &=& (5828.99\pm 0.08_{\rm stat}\pm 0.13_{\rm syst}\pm 0.45_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ M_{B_{s2}^{*0}} &=& (5839.67\pm 0.13_{\rm stat}\pm 0.17_{\rm syst}\pm 0.29_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ M_{B_{1}^{0}} &=& (5724.1\pm 1.7_{\rm stat}\pm 2.0_{\rm syst}\pm 0.5_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ M_{B_{1}^{+}} &=& (5726.3\pm 1.9_{\rm stat}\pm 3.0_{\rm syst}\pm 0.5_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ M_{B_{2}^{*0}} &=& (5738.6\pm 1.2_{\rm stat}\pm 1.2_{\rm syst}\pm 0.3_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ M_{B_{2}^{*0}} &=& (5739.0\pm 3.3_{\rm stat}\pm 1.6_{\rm syst}\pm 0.3_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^{2} \ , \\ \end{array}$$

- Good agreement with theory prediction
 - > (M. Di Pierro and E. Eichten, Phys. Rev. D64 (2001) 114004)

0* First Observation !! arxiv:1205.3452

Two narrow states are observed in $\Lambda_b{}^0\pi^+\pi^-$ spectrum in L=1.0 fb⁻¹ data

Expected at $J^{p} = 1/2^{-}$ and $3/2^{-}$

Two narrow states are observed in $\Lambda_{b}{}^{0}\pi^{+}\pi^{-}$ spectrum in L=1.0 fb⁻¹ data

30

Mass (MeV/c²)

 $< \Lambda_{h}^{0*}$ First Observation !!

30

25

(a)

arxiv:1205.3452

LHCb

Two harrow states are observed in $\Lambda_{\rm b}{}^0\pi^+\pi^-$ spectrum in L=1.0 fb⁻¹ data

Expected at $J^{P} = 1/2^{-}$ and $3/2^{-}$

NEW

Quarkonium Results

Double Charm

J/ψC & CC/CCbar measured @
 LHCb in 16 channels

Mode	yield
$J/\psi D^0$	4875 ± 86
$J/\psi D^+$	3323 ± 71
${\rm J}/\psi {\rm D}_{\rm s}^+$	328 ± 22
${ m J}/\psi\Lambda_c^+$	116 ± 14
$D^{0}D^{0}$	1087 ± 37
${ m D}^0ar{ m D}^0$	10080 ± 105
D^0D^+	1177 ± 39
D^0D^-	11224 ± 112
$D^0D_s^+$	111 ± 12
$\mathrm{D}^{0}\mathrm{D_{s}^{-}}$	859 ± 31
$D^0\Lambda_c^+$	41 ± 8
${ m D}^0ar{\Lambda}_{ m c}^-$	308 ± 19
D^+D^+	249 ± 19
D^+D^-	3236 ± 61
$D^+D_s^+$	52 ± 9
$\rm D^+D_s^-$	419 ± 22
$D^+\Lambda_c^+$	21 ± 5
$\mathrm{D}^+ \bar{\Lambda}_{\mathrm{c}}^-$	137 ± 14

Compared with $gg \rightarrow J/\psi c \overline{c}$ computations: A. V. Berezhnoy et al., Phys. Rev. D57 (1998) 4385 J.-P. Lansberg, Eur. Phys. J C61 (2009) 693

arXiv:1205.0975

Double Charm

arXiv:1205.0975

Production of χ_c

arXiv:1202.1080 arXiv:1204.1462

Conclusions and Outlook

- LHCb produced very many interesting results with datasets 0.04–1 fb⁻¹
- **Many** results are being updated with more luminosity
- Several production measurements will be repeated at 8 TeV
- Very rich program to explore in next future
 - Exotic spectroscopy
 - Double quarkonium
 - Precision measurements, B_c physics

