

Westfälische Wilhelms-Universität Münster

Multiplicity Dependence of Two-Particle Correlations in Proton-Proton Collisions

Eva Sicking^{1,2} on behalf of the ALICE Collaboration ¹Institut für Kernphysik, Universität Münster, Germany ²CERN, Switzerland

24th Rencontres de Blois, Particle Physics and Cosmology 2012

A Large Ion Collider Experiment

- ALICE is designed to study heavy-ion (Pb-Pb) collisions and also proton-proton (pp) collisions
 - Several signals in heavy-ion collisions are measured relative to pp
 - ALICE also has a rich pp program
- ALICE special features for pp minimum bias physics
 - Low momentum sensitivity due to low material budget and low magnetic field
 - Excellent primary and secondary vertex resolution
 - Excellent Particle Identification (PID) capability
- ALICE can give important input to pp studies
 - Rare signals need good description of soft underlying event
 - Tuning of MC generators in low- p_{τ} region
 - Study of high-multiplicity collisions

Analysis Motivation

- High-energy proton-proton collisions can be interpreted as collisions of two "bunches of partons"
- \rightarrow when two protons collide, it is possible that multiple distinct pairs of partons collide with each other
 - \rightarrow Multiple parton interactions (MPI)

- MPIs presumably have impact on multiplicity distribution, jets, and the underlying event
- Is it possible to measure multiple parton interactions, e.g. the number and the corresponding particle yield?
 - Possible access to MPI via jets and mini-jets

Motivation of Analysis Approach

- Investigate properties of jets and low energetic "mini-jets" and their contribution to the event multiplicity
 - "Mini-Jets" are particles from "hard scattering", which have too low energy in comparison to the underlying event, and which therefore can not be reconstructed event-by-event
 - But, there is a possibility to access mini-jet properties via two particle correlations averaged over many events
 - Different correlation approaches:
 - 1. Correlation with one leading particle, particles with highest transverse momentum
 - 2. Triggered, inclusive correlations between all tracks with $p_{T} > p_{T,trig}$ and $p_{T} > p_{T,assoc}$ using $p_{T,trig} > p_{T,assoc}$

- Both methods have drawbacks
 for mini-jet measurements
 - Bias to hard momentum scale (increase of p_{T,max} with N_{charged})
 - Attention: possible bias due to unwanted combinatorics of correlated trigger particles

Per-trigger Associated Yield

- Associated per-trigger yield as function of azimuthal angle φ and multiplicity N_{charged}
- Several trigger-particle per event
- $p_{T,trig} > 0.7 \text{ GeV}/c \text{ or higher}$
- $p_{T,assoc} > 0.4 (0.7) \text{ GeV/c or higher}$ $\frac{d^2 N}{d \Delta \varphi \, dN_{ch}} (\Delta \varphi, N_{ch}) = \frac{1}{N_{trig}} \frac{d^2 N_{assoc}}{d \Delta \varphi \, dN_{ch}}$

- Associated per-trigger yield can be computed for different
 - N_{ch} , $p_{T,trig}$, $p_{T,assoc}$
- Comparison of single correlation properties instead of comparison of the complete distribution
 - e.g. per-trigger yield in combinatorial background, per-trigger "near side" yield, per-trigger "away side" yield

Signal Extraction via Fit Function

- The fit function is a combination of a constant and periodically continuing Gaussian functions
- Data and fit are in good agreement with each other
- Extract correlation observables from fit and derive final observable

Multiplicity Dependence of 2-Particle Correlations

- Pythia simulations are based on multiple parton interactions (MPI)
- Pythia-MPI = number of (semi-)hard scatterings that occurred in the current event in the multiple interaction scenario

- Dependence is approximately linear
 → Analysis can probe MPI
- See backup slides for more details

Analysis Details

- Data (including ITS and TPC)
 - pp @ √s = 0.9 TeV:
 - 7 million events
 - pp @ $\sqrt{s} = 2.76 \text{ TeV}$:
 - 34 million events
 - pp @ √s = 7.0 TeV:
 - 270 million events
- Event cuts
 - Minimum bias trigger (hit in V0 or SPD)
 - One distinct reconstructed vertex within |z_{vertex}| < 10 cm of good quality
 - At least one track in ITS-TPC acceptance ($p_T > 0.2 \text{ GeV}/c$, $|\eta| < 0.9$)

- Track cuts
 - Full refit procedure during the tracking in ITS and TPC
 - At least 1 hit per track in one of the first 3 ITS layers (first 3 out of 6)
 - At least 70 clusters per track in the TPC drift volume (out of 159)
 - χ^2 /TPC cluster < 4
 - Reject tracks with kink topology
 - p_{T} dependent DCA_{xy} cut corresponding to 7σ of track distribution (DCA_{xy,max} = 0.3 cm)
 - $DCA_z < 2 \text{ cm}$

Corrections and Systematic Uncertainties

- Correction chain
 - Reconstruction efficiency
 - Contamination with tracks from secondary particles
 - Two-track and detector effects
 - Multiplicity correction
 - Contamination from strange particles
 - Vertex reconstruction efficiency
 - Trigger efficiency

- Sources of systematic uncertainties
 - Uncertainty of ITS-TPC efficiency
 - Particle composition in MC
 - Track cut dependence
 - Correction procedure
 - Event generator dependence
 - Transport MC dependence
 - Signal extraction
 - Vertex quality cut dependence
 - Pileup events
 - Influence of resonances
 - Material budget
 - Strangeness correction

Per-Trigger Yield ($p_{T,assoc} > 0.4 \text{ GeV}/c$) @ 7 TeV

- Per-trigger yield at near and away side rises with N_{charged}
- Near side yield is overestimated by Phojet, Pythia8, and Pythia6 Perugia-0 by up to 100%, while P2011 agrees well
- Away side is underestimated by Perugia-2011 by up to 50%, best agreement between ALICE data and Perugia-0

Eva Sicking

- Per-trigger yield at near and away side rises with N_{charged}
- Near side yield is overestimated by Phojet, Pythia8, and Pythia6 Perugia-0 by up to 100%, while P2011 agrees well
- Away side is underestimated by Perugia-2011 by up to 50%

Eva Sicking

Trigger & Uncorrelated Seeds @ 7 TeV

- Number of trigger particles (*p*_T>0.7GeV/c) rises stronger than linear with N_{charged} → rise of mean-*p*_T with N_{charged}
- Phojet is much softer while Pythia tunes reproduce data fairly well

 $\langle N_{uncorrelated \ seeds} \rangle = \frac{\langle N_{trig} \rangle}{\langle 1 + N_{assoc, near + away} (p_T > p_{T, trig}) \rangle}$

At low and intermediated multiplicities,
 N_{uncorrelated seeds} rises linearly with multiplicity

Per-Trigger Near Side Yield

- Near side yield at same multiplicity bin grows with increasing center-of-mass energy
- Splitting between slopes for different
 √s is largest for Phojet

 $\pmb{p}_{\mathsf{T,trig}}$

> 0.7 GeV/c

p_{T,assoc}> 0.4 GeV/c

Per-Trigger Away Side Yield

- Away side yield at same multiplicity bin shrinks with increasing √s
- Pythia6 Perugia-2011 underestimates ALICE data
- Phojet shows almost no \sqrt{s} dependence

p_{T.tria}

> 0.7 GeV/c

 $p_{\mathrm{T,assoc}}$ > 0.4 GeV/c

- Only small √s dependence
- In low and intermediate multiplicity region: N_{uncorr. seeds} grows linearly with N_{charged}
- At high multiplicities, the number of N_{uncorr. seeds} stagnates -> Multiplicity increase only by selecting events with highly populated jets, limit in N_{MPI}

<Nuncorrelated seeds > and linear fit

- Compare distribution with linear fit in intermediate N_{charged} range
- At high multiplicities, hint of deviation from linear dependence this would indicate a limit in MPI

Summary

- Study of the per-trigger yield at the near side and the away side as well as the number of uncorrelated seeds using a two-particle correlation analysis
- Analysis of ALICE data at $\sqrt{s} = 0.9, 2.76, and 7.0 \text{ TeV}$
- At high multiplicities, hint of deviation from linear dependence - this would indicate a limit in MPI

- Pythia studies show that the analysis approach can probe number of multi parton interactions (MPI)
- Pythia Perugia-2011 gives best description of ALICE results
 - However, at intermediate
 N_{charged}, the away side yield is
 underestimated by 50%
- Phojet, Pythia6-Perugia-0, and Pythia8 show large discrepancies to ALICE results
 - e.g. per-trigger near side yield is overestimated by all MCs by 100% at low and intermediated N_{charged}

Correction: Contamination

- Contamination of track sample from secondary particles shows p_T dependence, but almost no eta dependence
- Overall contamination ~ 6%
 Multiplicity Dependence of 2-Particle Correlations

- At high momenta, the statistics is low
- Estimate contamination by extrapolation from intermediate p_T

Correction: Reconstruction Efficiency

- Reconstruction efficiency shows strong p_T dependence and slight eta dependence
- Overall tracking efficiency is ~80%

- At high momenta, the statistics is low
- Estimate tracking efficiency by extrapolation from intermediate p_T

Correction: Two Track and Detector Effects

- A fraction of the near side peak after single track correction is due to detector effects (black) \rightarrow limited flatness in ϕ distribution give rise to structures in $\Delta \phi$
- Remaining peak comes from split tracks, resonances, gamma conversion
- Correction on total yield is very small

Multiplicity Correction

Eva Sicking

- Multiplicity correction via normalized and extended correlation matrix
- Normalization:

$$- \sum_{N_{rec}} R(N_{mc}, N_{rec}) = 1$$

- Extension:
 - Fit slice of correlation matrix with Gaussian function and extract sigma and mean
 - Used extrapolated sigma and mean for extended correlation matrix
- Correction:

$$Observable(N_{mc}) = \sum_{N_{rec}} Observable(N_{rec}) \cdot R_{1,extended}(N_{mc}, N_{rec})$$

Assumption: $N_{uncorrelated seeds} \rightarrow N_{MPI}$

• We measure N_{uncorrelated seeds}

$$\langle N_{uncorrelated \ seeds} \rangle = \frac{\langle N_{trig, p_T > p_{T,trig}} \rangle}{\langle 1 + N_{assoc, near, p_T > p_{T,trig}} + N_{assoc, away, p_T > p_{T,trig}} \rangle}$$

- We assume that N_{uncorrelated seeds} scales with the number of multiple parton interactions
- Can we demonstrate a direct dependence in Pythia simulations
 - Perform two-particle correlation analysis of Pythia6 simulations as function of N_{MPI} = number of multiple parton interactions
 - N_{MPI} (Pythia definition) = number of hard or semi-hard scatterings that occurred in the current event in the multiple interaction scenario; is 0 for a low-*p*T event

MPI in Pythia6 Perugia2011

- Spectrum of multiple parton interactions in Pythia6 Perugia-2011
- Correlation of measured multiplicity to number of multiple parton interactions

N_{uncorrelated seeds} ~ N_{MPI}

 Agreement with linear fit is better when accepting tracks at full η acceptance and not only the tracks in the ALICE acceptance

 $\sim N_{MPI}$ Nuncorrelated seeds

• Linear dependence is given for several p_{T} thresholds

Estimation of Combinatorics in Auto Correlations

For an a priori unknown multiplicity distribution P(n) of the mini-jet, we measure

$$\frac{\langle n(n-1)\rangle}{2\langle n\rangle} = \frac{1}{2} \left(\frac{\langle n^2 \rangle}{\langle n \rangle} - 1 \right)$$

For steadily falling *P*(n) and small *<n>* this is in good approximation:

$$\frac{1}{2} \left(\frac{\langle n^2 \rangle}{\langle n \rangle} - 1 \right) \longrightarrow \frac{\langle n \rangle}{1 - P(0)} - 1 \qquad (= \text{ with trigger condition - 1})$$

Which is the mean number of associated particles.

Expect *P*(n) to be steadily falling, choose $p_{_{T,trig}}$ such that <n> is low

Multiplicity Dependence of 2-Particle Correlations