Cosmology Probes

N. Regnault

(LPNHE, Paris)

Cosmology Probes

- Type la supernovae
- Type II supernovae
- Baryon acoustic oscillations
- Cosmic shear
- Lensing amplification
- Galaxy-galaxy lensing
- Redshift space distorsions
- Alcock-Paczynsky effect
- GRBs as standard candles

- CMB
- Integrated Sachs-Wolfe effect
- Weak-lensing of CMB
- Abundance of galaxy clusters
- Cluster gas mass fraction
- GW from spiraling neutron stars
- Strong lensing of distant QSOs
- Abundances of lensed arcs

Cosmology Probes

- Type la supernovae
- Type II supernovae
- Baryon acoustic oscillations
- Cosmic shear
- Lensing amplification
- Galaxy-galaxy lensing
- Redshift space distorsions
- Alcock-Paczynsky effect
- GRBs as standard candles

- CMB
- Integrated Sachs-Wolfe effect
- Weak-lensing of CMB
- Abundance of galaxy clusters
- Cluster gas mass fraction
- GW from spiraling neutron stars
- Strong lensing of distant QSOs
- Abundances of lensed arcs

•	•		
roci	cinn	mancuramante	•
	SIULI	IIICASULCIIICIILS	•

WMAP Planck SDSS SNLS BOSS

.. hints for a low $\Omega_{\rm m}$

(Efstathiou et al, 1990) (Peacock, 1991) (Bahcall & Fan, 1998)

6 PARAMETERS ONLY ...

... BUT A RATHER STRANGE BREW ...

- Nature of Dark Energy ?
 - Equation of state

$$p = w(z) \times \rho$$

OR

- Growth rate of structure

$$f = \Omega_m^{\gamma}(z)$$

0.55 (GR)

Probes

- The smooth Universe
 - Type la Supernovae
 - Baryon acoustic oscillations
- Inhomogeneities
 - Clusters
 - Lensing by Large scale structures
 - Redshift space distorsions

"1st order cosmology" Dynamical probes

Type Ia Supernovae

(Image by D. Dixon)

Type Ia Supernovae

- THERMONUCLEAR EXPLOSION OF WD
 - RARE EVENTS (~1 / GAL / 1000 yr)
 - Very Bright (~ 10^{10} solar luminosities)
 - Transients (~ 1 month)
 - $\sigma(L_{_{MAX}}) \sim 40\%$

Standardizable $\rightarrow \sigma(\text{Lmax}) \sim 15\%$

- Spectroscopy
 - → IDENTIFICATION (BROAD FEATURES)
 - → CHEMICAL COMPOSITION & VELOCITIES

STANDARD CANDLES IN COSMOLOGY

- Redshift $z = \delta \lambda / \lambda$
- Apparent flux
- Standard candles
 - $f = L / 4\pi d_1^2(z)$
- $d_1(z) \rightarrow$ integrated history of the expansion $\propto \int \frac{dz}{H(z)}$

$$d_L(z) = (1+z)\frac{c}{H_0} \int dz' \left(\Omega_m (1+z)^2 + \Omega_k (1+z)^2 + \Omega_X \exp\left(\int_0^z 3\frac{1+w(z')}{1+z'}dz'\right)\right)^{-1/2}$$

CURRENT CONSTRAINTS ON W

• Planck + SNe Ia

$$w = -1.018 \pm 0.057$$

- FoM ~ 30 (SNe + Planck + BOSS)
- Note : Planck + BAO
 - $w = -1.01 \pm 0.08$

(see also Suzuki et al '12, Rest et al '13, Scolnic et al '13...)

Systematics

Uncertainty sources	$\sigma_x(\Omega_m)$	% of $\sigma^2(\Omega_m)$
Calibration	0.0203	<mark>36.7</mark>
Milky Way extinction	0.0072	4.6
Light-curve model	0.0069	4.3
Bias corrections	0.0040	1.4
Host relation ^{<i>a</i>}	0.0038	1.3
Contamination	0.0008	0.1
Peculiar velocity	0.0007	0.0
Stat	0.0241	51.6

(Betoule et al, 2014)

Photometric calibration (still) dominates the systematic uncertainty budget.

ASTROPHYSICAL SYSTEMATICS

- Astrophysical systematics
 - 2 populations + evolving demographics ?
 - Absorbed into 1 additional parameter

BARYON ACOUSTIC OSCILLATIONS

Credit: Zosia Rostomian, LBNL

• Oscillations in primordial plasma

$$-r_s = \int_0^t \star \frac{c_s(t)}{a(t)} dt = 147.5 \pm 0.6 \text{ Mpc}$$
(Planck Coll XVI)

(Eisenstein et al, '05 Cole et al '05)

BARYON ACOUSTIC OSCILLATIONS

- Transverse direction $s_{BAO\perp} = (1+z)D_A(z)\Delta\theta$
- Parallel direction

$$s_{BAO\parallel} = \frac{c}{H(z)} \Delta z$$

"Angle averaged" ruler

$$D_V = s_{BAO} \times \left(D_A^2 \frac{cz}{H} \right)^{1/\epsilon}$$

with more statistics

 \rightarrow separate $D_A(z) \& H(z)$

BARYON ACOUSTIC OSCILLATIONS

- Geometric measurement
- *Absolute* angular distances (r is known)
- Sensitivity to H(z)
- Measurable wherever there are baryons
 - (Galaxies, Ly- α forest, quasars...)

- Expensive probe : millions of redshifts needed
- Cosmic variance at low redshift

BAO HUBBLE DIAGRAM

Sensitivity to cosmology

• Constrains extensions of ACDM. Sensitive to w and curvature.

DISENTANGLING H(z) & $D_A(z)$

BAO in the Ly- α Forest

0.4

0.2

0.0

-0.4

 $r^{2}\,\xi_{0}(r)$

- **Background quasars**
- Light travels through the intergalactic medium (ionized H)
- Ly- α , absorption line

GALAXY CLUSTERS

(Allen, Evrard, Mantz, '11)

Clusters

Clusters

DETECTING CLUSTERS

South Pole Telescope

Optics \rightarrow low masses DES survey : ~ 5000 deg²

Microwave : SZ effect SPT survey : ~ 2500 deg²

Inverse compton scattering on CMB hot intracluster gas

- \rightarrow cold spots in CMB @ orig freq
- \rightarrow hot spots at higher freqs

CLUSTERS COUNTS

CLUSTER MASSES

RECENT CONSTRAINTS FROM PLANCK

COSMIC SHEAR

Credit: R. Massey http://www.astro.caltech.edu

COSMIC SHEAR

T, Hamana, via ned.ipac.caltech.edu

WEAK SHEAR MEASUREMENTS

Measured ellipticity of stars (CFHT/Megacam) Hoekstra et al 2005 • Weak shear signal

- correlations of ellipticities of distant galaxies (as a function of angular separation)
- Sources of ellipticity:
 - natural galaxy ellipticity : ~ 30%

 \Rightarrow average over many galaxies

- Imaging system : 0 - 10 %

 \Rightarrow measure ellipticity of stars

- cosmological signal : ~ 1%

BARYONS

CONSTRAINTS FROM SHEAR MEASUREMENTS

(Fu et al, '14)

See also Heymans et al, '13

Redshift space distorsions

- Density contrast $\delta = \frac{\rho_m \overline{\rho}}{\overline{\rho}}$
- Growth rate of structure

$$f(z) = \frac{d\ln\delta(k)}{d\ln a}$$

• Parametrized as

$$f(z) = \Omega_m^{\gamma}(z)$$

- $\Lambda CDM/GR$ predict $\gamma \sim 0.55$
 - \rightarrow measurement of f(z) \rightarrow tests of gravity

Redshift space distorsions

• Alcock-Paczynski test \rightarrow F(z) = (1+z) D_A(z) H(z) (quadrupoles)

Redshift space distorsions

(Reid et al, '14) (de la Torre et al, '13)

