

Higgs property measurements and future collider prospects

Other presentations

Impossible to cover everything, please see detailed presentations:

Study of Higgs boson production in bosonic decay channels at the LHC

Presented by Roberta VOLPE on 21 May 2014 at 14:00

Study of Higgs boson production in fermionic decay channels at the LHC Presented by **Vivek JAIN** on **21 May 2014** at **14:20**

Combinations of results of Higgs boson production at the LHC (production rates, couplings) Presented by Christian MEINECK on 21 May 2014 at 14:40

Higgs boson studies at the Tevatron

Presented by Lidija ZIVKOVIC on 21 May 2014 at 15:00

Higgs and EW precision data

Presented by Andrea TESI on 21 May 2014 at 15:20

Measurements of the Higgs Boson Spin and CP at the LHC

Presented by Roko PLESTINA on 21 May 2014 at 16:30

Searches for BSM Higgs Bosons at the LHC

Presented by Claire SHEPHERD-THEMISTOCLEOUS on 21 May 2014 at 16:50

Higgs exotic decays

Presented by Prerit JAISWAL on 21 May 2014 at 18:10

Studies of Higgs Boson Properties in Future LHC Runs (Snowmass & ECFA studies) Presented by Rostislav KONOPLICH on 21 May 2014 at 18:30

SM Higgs @ the LHC

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Higgs Width at the LHC

The width of the Standard Model

Higgs is 4.15 MeV << O(GeV) resolution

→ ambiguity as Rate \propto Br = Γ/Γ_{SM}

off-shell effects sensitive to width

F. Caola and K. Melnikov, [arXiv:1307.4935] See also: N. Kauer, G. Passarino, Campbell et al

Spin & CP Properties

Kyle Cranmer (NYU)

Blois, May 19, 2014

Cross-sections and Branching Ratios (assuming 0⁺ SM tensor structure)

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson	Subsequent	Sub-Channels		Ref.
Decay	Decay		$[fb^{-1}]$	
2011 $\sqrt{s} = 7 \text{ TeV}$				
$H \rightarrow ZZ^{(*)}$	4ℓ	{4 <i>e</i> , 2 <i>e</i> 2µ, 2µ2 <i>e</i> , 4µ, <mark>2-jet VBF, ℓ-tag</mark> }	4.6	[8]
		10 categories		[7]
$\Pi \to \gamma \gamma$	_	$\{\frac{p_{\text{Tt}}}{p_{\text{Tt}}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{\frac{2 \text{-jet VBF}}{2 \text{-jet VBF}}\}$	4.0	[/]
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} VBF\}$	4.6	[9]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet, } 1\text{-jet, } p_{\mathrm{T},\tau\tau} > 100 \text{ GeV, } 2\text{-jet}\}$	4.6	[10]
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{\tilde{W}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	
		2012 $\sqrt{s} = 8 \text{ TeV}$		

$H \to ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-jet VBF, \ell-tag\}\}$	20.7	[8]
$H ightarrow \gamma \gamma$	_	14 categories ${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2 - \text{jet VBF}} \oplus {\ell - \text{tag, } E_{\text{T}}^{\text{miss}} - \text{tag, } 2 - \text{jet VH}}$	20.7	[7]
$H \rightarrow WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} VBF\}$	20.7	[9]
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet, 1-jet, } p_{\mathrm{T}, \tau\tau} > 100 \text{ GeV, 2-jet}\}$	13	[10]
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

Kyle Cranmer (NYU)

Blois, May 19, 2014

Disentangling multiple production modes

∎ggF ■VBF ttH WH **7**H **ATLAS** Preliminary (simulation) $H \rightarrow \gamma \gamma$ Inclusive Unconv. central low p_{Tt} ATLAS Preliminary Unconv. central high p $_{_{Tt}}$ Unconv. rest low p_{Tt}^{Tt} Data 2012, √s = 8 TeV Unconv. rest high p_{Tt} $Ldt = 20.7 \text{ fb}^{-1}$ Conv. central low p Conv. central high $p_{Tt}^{\cdot \cdot}$ Conv. rest low p_{Tt} $H \rightarrow \gamma \gamma$ Conv. rest high p_{T_t} m_H = 126.8 GeV Conv. transition Loose high-mass two-jet Tight high-mass two-jet Low-mass two-jet E_{τ}^{miss} significance One-lepton 100 -2 10 20 30 50 60 70 80 90 0 40 0 2 8 10 6 4 signal composition (%) Signal strength

$$n_{\text{Signal}}^{k} = \left(\sum \mu_{i} \sigma_{i,SM} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \mathcal{B}_{f,SM} \times \mathcal{L}^{k}$$

- $\sigma_i = \mu_i \sigma_{i,SM}$ is the i^{th} hypothesized production cross section
- $\mathcal{B}_f = \mu_f \mathcal{B}_{f,SM}$ is the f^{th} hypothesized branching fraction
- Detector acceptance A_{if}^k , reconstruction efficiency ε_{if}^k , and integrated luminosity \mathcal{L}^k are fixed by above assumptions

CENTER FOR

COSMOLOGY AND PARTICLE PHYSICS

Model-independent presentation

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

All coupling measurements pass through this $\sigma_i \times BR_j$ space

Citations (4)

Information

Files

Data from Figure 7 from: Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC ATLAS Collaboration (Aad, Georges (Freiburg U.) [...]) <u>Show all 2923 authors</u> Cite as: ATLAS Collaboration (2013) HepData, http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44

See also [arXiv:1401.0080] for new approach to decouple theory uncertainty from experimental results

Model-independent presentation

Can't compare contours directly, b/c there is a different BR for axis

But, BR cancels when considering slope in this plane

• mild sensitivity to theory uncertainties (jet veto, ggH+2jet contamination,...)

Kyle Cranmer (NYU)

VBF 2-photon candidate

ETmiss=102 GeV, m_{jj} =1.04 TeV and $m_{\tau\tau}$ =127 GeV

1 VBF candidate observed (m₄₁=123.5 GeV) [0.7 expected, S/B~5]

Ratio of Branching Ratios

A model independent approach less sensitive to theory uncertainties

Kyle Cranmer (NYU)

Status of VH production

VH production not yet firmly established

Channels:

- $H \rightarrow \gamma \gamma$: simple lepton tag, few events
- $H \rightarrow$ bb: complicated analyses
- Sensitivity at ~2x SM rate

ATLAS & CMS both see a convincing diboson peak in $H \rightarrow$ bb with slight Higgs-like excess \cdot evidence for VH at Tevatron

 $H \rightarrow \gamma \gamma$ @ ATLAS

$H \rightarrow bb @ ATLAS$

H→bb @ CMS

Couplings

The basic starting point for the various parametrizations :

$$\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

No useful direct constraint on total width at LHC (but getting close)

- ideally, allow for invisible or undetected partial widths
- leads to an ambiguity unless something breaks degeneracy

Various strategies / assumptions break this degeneracy

- Assume no invisible decays
- Fix some coupling to SM rate
- Only measure ratios of couplings
- + Limit $\Gamma_V \leq \Gamma_V^{\mathrm{SM}}$ eg. Dührssen et. al, Peskin, ...
 - valid for CP-conserving H, no H⁺⁺, ... Gunion, Haber, Wudka (1991)
 - together with $\Gamma_V^2/\Gamma = \text{meas} \implies \Gamma_{\text{vis}} \leq \Gamma \leq \Gamma_{V,SM}^2/\text{meas}$

Parametrizing the couplings

Approach: scale couplings w.r.t. SM values by factor κ

Expansion around SM point with state-of-the-art predictions

Option 1) relate ggH and $\gamma\gamma$ H assuming no new particles in loop

Option 2) introduce κ_g and κ_γ as effective coupling to ggH and $\gamma\gamma$ H

Benchmark models

Fully model independent fit is not very informative with current data

Benchmarks proposed by joint theory/experiment LHC XS group arXiv:1209.0040

Probe Fermionic vs. Bosonic couplings:

Probe W vs. Z couplings (custodial symmetry)

Probe up. vs. down fermion couplings

Probe quark vs. lepton couplings

Probe new particles in ggH and \gamma\gammaH loops

Probe invisible decays

Example Coupling results

Here, evidence for fermion couplings is indirect

Example Coupling results

Updated results from ATLAS with fermionic channels

Invisible decays

ATLAS & CMS directly probing invisible decays with associated production

Summary of what we have established

Mass, spin, CP, and flavor

- mH ~125.5 ± 0.5 GeV
- looks like 0⁺ as in SM, though only marginally favored over some alternatives
- fraction of CP odd coupling in ZZ is < \sim 50%
- no FCNC seen, BR(t \rightarrow Hc) $\lesssim 1\%$

Production:

- discovery established ggF production & now VBF production also firmly established
- + evidence for VH ~2 σ
- ttH: not yet, look out for Run-II

Decays:

- γγ, WW, ZZ >> 5σ
- $\tau\tau$ at ~4 σ (lack of $\mu\mu$ as expected \Rightarrow not a flavor-universal coupling)
- bb ~2σ
- BR(H \rightarrow invisible/undetected) < ~60%
- total width < ~4.2x SM
- Overall coupling pattern:
 - consistent with the SM, though $\sim 2\sigma$ tension seen

Future Colliders

A very active area

The European strategy for particle physics

Higgs working group report

Conveners: Sally Dawson (BNL), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Jianming Qian (Michigan), Chris Tully (Princeton), Rick Van Kooten (Indiana)

Authors: A. Ajaib, A. Anastassov, I. Anderson, D. Asner, O. Bake, V. Barger, T. Barklow, B. Batell, M. Battaglia, S. Berge, A. Blondel, S. Bolognesi, J. Brau, E. Brownson, M. Cahill-Rowley, C. Calancha-Paredes, C.-Y. Chen, W. Chou, R. Clare, D. Cline, N. Craig, K. Cranmer, M. de Gruttola, A. Elagin, R. Essig, L. Everett, E. Feng, K. Fujii, J. Gainer, Y. Gao, I. Gogoladze, S. Gori, R. Goncalo, N. Graf, C. Grojean, S. Guindon, H. Haber, T. Han, G. Hanson, R. Harnik, S. Heinemeyer, U. Heintz, J. Hewett, W. Burger, S. Guindon, H. Haber, T. Han, G. Hanson, R. Harnik, S. Heinemeyer, D. Heintz, J. Hewett, M. Kulti, K. Battaglia, S. Battaglia, S. Battaglia, S. Battaglia, S. Berge, A. Blondel, S. Bolognesi, J. Brau, E. Brownson, M. Cahill-Rowley, C. Calancha-Paredes, C.-Y. Chen, W. Chou, R. Clare, D. Cline, N. Craig, K. Cranmer, M. de Gruttola, A. Elagin, R. Essig, L. Everett, E. Feng, K. Fujii, J. Gainer, Y. Gao, I. Gogoladze, S. Gori, R. Goncalo, N. Graf, C. Grojean, S. Guindon, H. Haber, T. Han, G. Hanson, R. Harnik, S. Heinemeyer, U. Heintz, J. Hewett, W. Battaglia, B. Kattaglia, B.

pt, S. Kanemura, S. Kawada, R. Kehoe, M. Klute,
Kunkle, M. Kurata, I. Lewis, Y. Li, L. Linssen,
Low, T. Ma, P. Mackenzie, B. Mellado, K. Melnikov,
n, H. Neal, J. Nielsen, N. Okada, H. Okawa, J. Olsen,
ello, T. Plehn, C. Pollard, C. Potter, K. Prokofiev,
R. Ruiz, V. Sanz, J. Sayre, Q. Shafi, G. Shaughnessy,
Su, T. Suehara, T. Tanabe, T. Tajima, V. Telnov,
Jn, M. Velasco, C. Wagner, S. Wang, S. Watanuki,
ya, S. Zenz, D. Zerwas, Y. Zhang, Y. Zhou

Future Circular Collider Study Kickoff Meeting

UNIVERSITÉ

DF GENÈVE

12-15 February 2014 Search University of Geneva - UNI MAIL

Europe/Zurich timezone

Webcast: Please note that this event will be available live via the Webcast Service.

Future Circular Collider Study Kickoff Meeting

806	T. Ma, et al.	Unified Field Theory and Principle of Representation Invariance	1212.080 (250)
13.5	E. Eichten, et al.	The Maon Collider as a IIIA Factory	1205/2009 (75/E)
837	W. Chen, et al.	BFITT - Higgs Factory in Tevatron Tunnel	1205,5202 (7045)
164	1. Gopelador, et al.	125 GeV Higgs Boson From Gauge Higgs Unification	1207-2079 (220)
112	W. Dargen, et al.	Discriminators of 2 Illiggs Doublets at the LIRC14, ILC and MacoCollider(125)	12022626 (2242)
179	P.Osyisi, et al.	Analysis of 1 that III Events at spritch-14 TeV with 12 > WW	1202,7280 (75(5)
191	N. Maru et al.	Diphoton and Z photon Decays of Higgs Boson in Gauge Higgs Unification	1202-8181 (75/5)
100	M. Cahll-Rowley, et al.	Constraints on Higgs Properties and SUSY Partners in the pMSSM	1205.0297 (2015)
106	1. M. Lewis	Closing the Wedge with 300 fb^-1 and 3000 fb^-1 at the LHC	120510112 (024)
113	T. Alexabin, et al.	Maon Collider Higgs Factory for Snewmans 2013	1208/2112 (75/5)
18	C Y.Chen	Projections for Two Higgs Doublet Models at the LHC and ILC	12052487 (2010)
121	M.A. Ajah, et al.	Higgs and Sparticle Masses from Vakawa Unified SO(10)	1206.052 (220)
125	W.I. Telnov	Comments on photon colliders for Snowmans 2013	1208-6868 (7525)
129	W. Nao	Studies of measuring Illggs self coupling with IIII > b bbar gamma gamma at the fature hadron colliders	1308.6302 (PDP)
139	I. Anderson, et al.	Constraining anomalous HVV interactions at process and lepton colliders	1209-0129 (2212)
183	E. Brownson, et al.	Heavy Higgs Scalars at Future Hadron Colliders	1208-6324 (7525)
185	H. Ohrwa, et al.	Prospects on the search for invisible Higgs decays in the ZH channel at the LHC and HL- LHC	1309.7905 (PDF)
94	R. Goncalo, et al.	Sensitivity of LHC experiments to the t1 bar II final state, with II > b bhar, at center of mass energy of 10 TeV	1310-8292 (PDP)
195	D.M. Asner, et al.	E.C Higgs White Paper	1210-0102 (7010)
97	J. Adelman, st al.	Study of top pairvHiggs (Higgs (diago) dimuon) production in the three lepton channel at sgn(x) = 14 TeV	1310.1132 (PDF)
200	M.K. Peskin	Estimation of LHC and E.C Capabilities for Precision Higgs Boson Coupling	1312,4974 (9999)

The dream machines

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Kyle Cranmer (NYU)

Blois, May 19, 2014

Some general comments on e⁺e⁻

 Z^*

Because 4-momentum of initial state known at $e^+e^- \rightarrow ZH$, it is possible to use recoil of Z in to reconstruct Higgs in a decay-independent way

- allows for measurement of absolute branching ratios
- story changes a bit now that LHC probing Higgs width via interference, but not same level of precision (1-5%) achievable at lepton colliders
- theoretical uncertainties at e⁺e⁻ generally much smaller than at hadron colliders

Top mass measurement at hadron colliders has large theoretical uncertainties in connecting to pole mass (needed for vacuum stability etc.).

• High-energy e⁺e⁻ colliders can measure top mass via threshold scan.

Kyle Cranmer (NYU)

Higgs Self Coupling @ future hadron colliders

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

- HL-LHC could measure $\lambda \sim 50\%$, more studies needed
- Need \sqrt{s} > 1TeV for ILC to improve
- Hard for TLEP/FCC-ee
- high energy hadron collider could measure λ at ~8%

	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WH	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	6.8	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
нн (33.8 fb	6.1	8.8	18	29	42

Probing new physics in high p_T tail

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

1σ

Model:

VHE-LHC is the machine to decipher the gg \rightarrow h process

Blois, May 19, 2014

34

CP-odd fraction at future colliders

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Target precision for CP-odd fraction in $\tau\tau$ H, ttH, γ ZH is 1%, which may be attainable at ILC or HL-LHC, but more studies are needed

Target precision for CP-odd fraction to WWH, ZZH where pseudo-scalar coupling is loop suppressed

Lepton Flavor Violation

- Probing the Higgs requires many sensory tools!
 - LHC
 - Higgs Factory
 - A strong program of precision & rare processes.

36

Higher dim. Op:

2 doublet model:

R. Harnik @ Snowmass

- or -

 $Y^{ij}Hf_L^if_R^j + \hat{Y}^{ij}\frac{|H|^2}{\Lambda^2}Hf_L^if_R^j$

 $Y_{1}^{ij}H_{1}f_{L}^{i}f_{R}^{j}+Y_{2}^{ij}H_{2}f_{L}^{i}f_{R}^{j}$

Two sources can be misaligned in <u>flavor</u> and/or in <u>phase</u>.

LHC h→TM gives dominant Bound.

(currently just a theorist's re-interpretation)

"natural models" are within reach.

Lepton Flavor Violation

- Probing the Higgs requires many sensory tools!
 - LHC 0

100

 10^{-1}

·10

-10

10

 $|Y_{\mathrm{tq}}|$ (q = c, u)

- **Higgs Factory** 0
- A strong program of precision & rare processes. 0

Harnik Kopp Zupan 1209.1397

Conclusions

Since the discovery less than two years ago enormous progress

- we are just getting to know our new friend
- there is much left to be done at the LHC and HL-LHC

The Higgs is one of the best handles we have to probe physics beyond the standard model

Future high-energy colliders and precision measurements will be necessary to probe at a satisfactory level of precision

- huge efforts to establish:
 - possible physics program of ILC
 - community study of possible future circular e⁺e⁻ and hadron colliders

Thank you!

Other presentations

Impossible to cover everything, please see detailed presentations:

Study of Higgs boson production in bosonic decay channels at the LHC

Presented by Roberta VOLPE on 21 May 2014 at 14:00

Study of Higgs boson production in fermionic decay channels at the LHC Presented by **Vivek JAIN** on **21 May 2014** at **14:20**

Combinations of results of Higgs boson production at the LHC (production rates, couplings) Presented by Christian MEINECK on 21 May 2014 at 14:40

Higgs boson studies at the Tevatron

Presented by Lidija ZIVKOVIC on 21 May 2014 at 15:00

Higgs and EW precision data

Presented by Andrea TESI on 21 May 2014 at 15:20

Measurements of the Higgs Boson Spin and CP at the LHC

Presented by Roko PLESTINA on 21 May 2014 at 16:30

Searches for BSM Higgs Bosons at the LHC

Presented by Claire SHEPHERD-THEMISTOCLEOUS on 21 May 2014 at 16:50

Higgs exotic decays

Presented by Prerit JAISWAL on 21 May 2014 at 18:10

Studies of Higgs Boson Properties in Future LHC Runs (Snowmass & ECFA studies) Presented by Rostislav KONOPLICH on 21 May 2014 at 18:30

References

- 1. CMS Public Higgs Results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
- 2. ATLAS Public Higgs Results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
- 3. ATL-PHYS-PUB-2013-007, "Physics at a High-Luminosity LHC with ATLAS"
- 4. arXiv:1310.8361, "Higgs Working Group Report of the Snowmass 2013 Community Planning Study"
- 5. arXiv:1401.6081, "Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier"
- 6. Snowmass Website: <u>http://www.snowmass2013.org/tiki-index.php</u>
- 7. ECFA Website: http://cds.cern.ch/collection/Plenary%20ECFA?In=en
- 8. European Strategy Website: <u>http://council.web.cern.ch/council/en/EuropeanStrategy/ESArchive.html</u>
- 9. CERN Future Circular Colliders kickoff: https://indico.cern.ch/event/282344/timetable/#20140212.detailed
- 10.ATL-PHYS-PUB-2013-012, "Sensitivity of ATLAS at HL-LHC to flavour changing neutral currents in top quark decays t \rightarrow cH, with H \rightarrow $\gamma\gamma$ "
- 11.ATL-PHYS-PUB-2013-013, "Prospects for measurements of the HZZ vertex tensor structure in H \rightarrow ZZ* \rightarrow 4I decay channel with ATLAS"
- 12.ATL-PHYS-PUB-2013-014, "Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC"
- 13.ATL-PHYS-PUB-2013-015, "Sensitivity to New Phenomena via Higgs Couplings with the ATLAS Detector at a High-Luminosity LHC"
- 14.ATL-PHYS-PUB-2013-016, "Beyond-the-Standard-Model Higgs boson searches at a High-Luminosity LHC with ATLAS"
- 15.CMS-PAS-HIG-13-002, "Properties of the Higgs-like boson in the decay H->ZZ->4I in pp collisions at sqrt(S)=7 and 8 TeV"
- 16.CMS-PAS-HIG-13-005, "Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV"
- 17.CMS-PAS-HIG-13-015, "Search for ttH production in events where H decays to photons at 8 TeV collisions"
- 18.CMS-PAS-HIG-14-002, "Constraints on the Higgs boson width from off-shell production and decay to ZZ ->III'I' and Ilnunu"
- 19.arXiv:1209.0040, "LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle"
- 20.arXiv:1305.3854, "Bounding the Higgs Boson Width Through Interferometry"
- 21.arXiv:1307.7135, "Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process"
- 22.arXiv:1308.2674, "Higgs CP properties using the tau decay modes at the ILC"
- 23.arXiv:1309.4819, "Constraining anomalous HVV interactions at proton and lepton colliders"
- 24.arXiv:1401.0080, "A Novel Approach to Higgs Coupling Measurements,"